UNIVERSITÀ DEGLI STUDI DI PADOVA
Dipartimento di Scienze Economiche e Aziendali “M. Fanno”

CORSO DI LAUREA TRIENNALE TREC

SMART FACTORY E REALTÀ AUMENTATA: IL FUTURO NELLE MANI DELLA TECNOLOGIA

Relatore: Ch.mo prof. Martina Gianecchini

Laureanda/o: Lara Ranzato
Matricola n. 1113119

Anno Accademico 2017 – 2018
Desidero ringraziare tutti coloro che mi hanno aiutato nella stesura della prova finale con consigli, osservazioni e critiche.

Innanzitutto, ringrazio la professoressa Gianecchini per avermi seguita costantemente e con grande impegno nella realizzazione dell’elaborato.

La mia gratitudine va inoltre all’Università degli Studi di Padova, a tutti i miei docenti e alla segreteria per aver risolto ogni minimo dubbio in tempi brevi.

Per ultimi, ma non di minor importanza, ringrazio la mia famiglia, gli amici e tutte le persone che giorno dopo giorno mi sostengono e mi stanno vicine in ogni decisione.
INDICE

INTRODUZIONE ... 1

1. CAPITOLO PRIMO ... 5

LA QUARTA RIVOLUZIONE INDUSTRIALE, LA SMART FACTORY E LE NUOVE TECNOLOGIE .. 5

1.1 Premessa ... 5
1.2 Introduzione alla quarta rivoluzione industriale .. 5
1.3 Le tecnologie della quarta rivoluzione industriale ... 7
1.4 La smart factory ... 12
 1.4.1 I Sistemi Cyber Fisici .. 12
 1.4.2 La fabbrica intelligente ... 13
 1.4.3 Il nuovo modello di business ... 14
 1.4.4 Le nuove opportunità .. 16
1.5 Il ruolo dell’uomo .. 17
 1.5.1 Customer experience .. 17
 1.5.2 Gli effetti sul mercato del lavoro ... 18
1.6 Conclusioni .. 20

2. CAPITOLO SECONDO .. 23

LA REALTÀ AUMENTATA, UN NUOVO MODO PER AUGMENTARE EFFICIENZA ED EFFICACIA IN UN MONDO CONNESSO ... 23

2.1 Premessa ... 23
2.2 Le wearable technologies ... 23
2.3 La realtà aumentata .. 24
 2.3.1 Realtà aumentata e smart glasses .. 27
2.4 Le applicazioni pratiche .. 30
 2.4.1 Il settore manifatturiero .. 30
 2.4.2 Healthcare .. 32
 2.4.3 Servizi e logistica .. 32
2.5 La teoria di Porter e le interdipendenze tra gli attori .. 33
 2.5.1 Porter ... 33
 2.5.2 Le interdipendenze tra gli attori ... 35
2.6 Conclusioni ... 35

3. CAPITOLO TERZO .. 37

APPLICAZIONI NELLA REALTÀ E L’ITALIA NEL 2018 ... 37

3.1 Premessa ... 37
Il contributo delle pratiche di risorse umane al raggiungimento degli obiettivi aziendali.

<table>
<thead>
<tr>
<th>3.2</th>
<th>Boeing nel 1992 ...</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>I limiti tecnologici degli anni Novanta ...</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Boeing nel 2018, un “case-study” di Upskill ...</td>
<td>40</td>
</tr>
<tr>
<td>3.3.1</td>
<td>I soddisfacenti risultati e le previsioni future ..</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Fino a che punto è arrivata l’Italia? ...</td>
<td>43</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Aprilia racing ..</td>
<td>43</td>
</tr>
<tr>
<td>3.4.2</td>
<td>AR a museo ..</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>Un mercato in esplosione ...</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusioni ..</td>
<td>50</td>
</tr>
</tbody>
</table>

4. **CONCLUSIONI** ... 51

CONCLUSIONI ... 51

RIFERIMENTI BIBLIOgrafICI .. 53

BIBLIOGRAFIA E WEBGRAFIA ... 53

Libri e articoli .. 53
Webgrafia .. 57
INTRODUZIONE

La scelta del tema della quarta rivoluzione industriale e dell’utilizzo della realtà aumentata nel mondo “enterprise” è nata da due fattori principali.

Primo fra tutti, lo stage. Lavorare in una start-up innovativa operante nell’ambito della realtà aumentata (AR) mi ha permesso di entrare a far parte di un mondo vasto, innovativo, scalabile. Le potenzialità dell’utilizzo degli Smart Glasses e della tecnologia AR da parte della workforce delle aziende sono in grado di portare grandi vantaggi in termini di efficienza, produttività, motivazione e costi.

Secondo, il mondo in cui viviamo. La tecnologia sta diventando parte del quotidiano, entrando nelle nostre vite come fosse una ragnatela. Permette la connessione totale, tra tutto e tutti. Basti pensare all’Internet of Things (IoT), ossia la base della digitalizzazione, ciò che permette che anche gli oggetti riescano a comunicare e trasferire dati fra loro.

Nella stesura sono stati presi in considerazione dati e informazioni da fonti ufficiali quali centri statistici, enti di ricerca, giornali, pagine web di aziende operanti nell’ambiente innovativo. Molti, infatti, sono gli studi sul tema da essi compiuti, sempre più numerosi, aggiornati e approfonditi.

In questo lavoro si cercheranno di chiarire alcuni aspetti importanti della rivoluzione tecnologica oggi in atto a livello mondiale. Il focus muoverà successivamente verso la realtà aumentata connessa all’utilizzo di smart glasses. Un’innovazione, questa, che porta e porterà sempre più benefici a livello operativo per le aziende, ma anche nelle scuole, negli ospedali, nei musei, nelle case automobilistiche.

A seguito di un breve “excursus” storico sui cambiamenti degli ultimi 250 anni, nel primo capitolo verrà introdotta la quarta rivoluzione industriale, caratterizzata da alcune tecnologie cardine delle modifiche in atto. Basti ricordare, per esempio, l’IoT, i Big Data, il Cloud, l’Intelligenza Artificiale. Queste e altre innovazioni saranno presto introdotte in molte aziende, specialmente manifatturiere, che a tal proposito vengono denominate “Smart Factories”. L’intelligenza degli oggetti sarà infatti la base per portare a termine lavori in modo sempre più efficiente ed efficace. Successivamente verrà analizzato il ruolo del cliente nel mercato, che oggi vede una grande crescita delle
aspettative e dell’informazione, specialmente grazie alla navigazione web e alla grande concorrenza in ogni settore. Infine, per chiudere il quadro introduttivo, una breve discussione sugli effetti di tutte queste innovazioni sul mercato del lavoro. A tal proposito, due concezioni principali: l’automazione porterà ad un drastico calo della disoccupazione, ma d’altro canto, aumenteranno le richieste di lavoro per persone informate e specializzate sul cambiamento in atto, grazie alla creazione di nuove posizioni.

Nel secondo capitolo verrà data luce al mondo “wearable” e della realtà aumentata (AR). I dispositivi indossabili stanno diventando un “must” nella vita quotidiana. Tra questi, gli smart glasses, hardware alla base della tecnologia descritta nei paragrafi successivi. Essi, infatti, combinati con software di realtà aumentata, permettono alla workforce o al semplice studente o visitatore di un museo, di vedere proiettati nella realtà di fronte ai propri occhi dati, informazioni, istruzioni guida. A ciò si aggiunge la possibilità di scattare foto o registrare video e audio, trasmettibili in tempo reale a persone situate a diversi chilometri di distanza (basti pensare all’assistenza da remoto tra due tecnici). L’innovazione che questa tecnologia sta portando nel mondo è di una tal portata da essere testimoniata e confermata anche dal famoso economista statunitense Michael Porter. Con un recente discorso ha definito le caratterizzate che porteranno al grande salto di qualità: visualizzazione, istruzione/guida, interazione, simulazione. Definisce la realtà aumentata come una “great equalizer” tra uomo e macchina, uno strumento che “colmerà il gap tra mondo reale e mondo digitale”. Per concludere il capitolo saranno poi eseguite delle considerazioni sulle interdipendenze tra gli attori. In particolare, possiamo considerare la standardizzazione dei processi nell’operatore che segue le istruzioni dei Glass e i meccanismi di feedback con supervisione diretta nell’assistenza remota a distanza.

Infine, il capitolo conclusivo ha come obiettivo quello di portare un caso studio internazionale e fare una panoramica dello stato di avanzamento tecnologico italiano. Partendo da Boeing e le prime simulazioni dell’utilizzo della AR nel 1992, si passerà poi a Boeing nel 2018, azienda che ricava molti benefici dall’utilizzo di questa tecnologia. Successivamente, alcuni dati riguardanti l’Italia per fare il punto della situazione nel nostro Paese. Ci sono ancora molti cambiamenti da mettere in atto, anche se già alcune organizzazioni attive in diversi settori sfruttano i vantaggi della
rivoluzione. La speranza, tuttavia, si accende vedendo i dati promettenti sui prossimi anni: siamo sulla rampa di lancio verso l’esplosione di un mercato totalmente rinnovato e tecnologico.
1. **CAPITOLO PRIMO**

LA QUARTA RIVOLUZIONE INDUSTRIALE, LA SMART FACTORY E LE NUOVE TECNOLOGIE

1.1 **Premessa**

Nel cominciare la relazione, andranno illustrati i trend tecnologici degli ultimi anni, partendo da quella che viene definita la “quarta rivoluzione industriale”, anche conosciuta come “Industria 4.0”. Successivamente si passerà a trattare la fabbrica intelligente, in particolare le caratteristiche, le opportunità e i cambiamenti in atto che rivoluzioneranno l’ambiente lavorativo e l’idea di business. L’ultima parte del capitolo si focalizzerà sul ruolo dell’uomo: da una parte l’esperienza sempre più sofisticata e ricercata del cliente; dall’altra le modifiche in atto nel mercato del lavoro.

1.2 **Introduzione alla quarta rivoluzione industriale**

Tornando indietro negli anni e focalizzandosi sul mondo occidentale, nel 1784 vi fu la prima rivoluzione industriale, caratterizzata dall’introduzione di macchinari basati sull’energia di acqua e vapore per meccanizzare la produzione. Successivamente, nel 1870, vi fu la seconda rivoluzione, con l’inizio della produzione di massa e l’uso sempre più diffuso dell’elettricità, l’avvento del motore a scoppio e l’aumento dell’utilizzo del petrolio come nuova fonte energetica. Con questa rivoluzione vi fu una riduzione del tempo che passava tra una scoperta scientifica e la successiva applicazione pratica. Conoscenza tecnica e sapere scientifico hanno quindi accelerato i ritmi dell’innovazione tecnologica.

Taylor, con l’organizzazione scientifica del lavoro (OSL), fu un massimo esponente delle teorie di questo periodo. Attraverso la ripartizione dei processi operativi in attività o gruppi di attività e la loro assegnazione ad attori o unità organizzative, egli trasformò l’organizzazione del lavoro in scienza, con l’obiettivo di ottenere maggiore produttività. Efficienza nei tempi e nei costi, selezione e addestramento dei lavoratori, collaborazione
tra direzione e manodopera ed infine introduzione di livelli gerarchici intermedi sono i quattro strumenti su cui basò la sua teoria (Costa e Gubitta, 2008). In particolare, è bene ricordare la catena di montaggio mobile alla Ford Motors, caratterizzata da divisione del lavoro e corrente elettrica. Ford standardizzò la produzione, utilizzò una produzione a flusso continuo e i principi del Taylorismo per produrre un manufatto complesso come un autoveicolo. Riuscì così, con un prezzo non eccessivamente alto, ad accrescere i suoi guadagni. Per tutta l’industria divenne più conveniente produrre beni di consumo di massa. Infine, possiamo identificare il 1970 con la nascita dell’elettronica e dell’informatica, quindi della terza rivoluzione industriale. Da essa è scaturita l’era digitale, con sistemi elettronici e dell’IT (Information Technology) destinati ad incrementare i livelli di automazione della produzione. È in questi anni che è nato il primo controllore a logica programmata (PLC), un sistema elettronico digitale destinato all’uso in ambito industriale che utilizza una memoria programmabile per l’archiviazione del programma utente orientato al controllo di macchine e processi.

Gli anni passano, il mondo cambia, le persone evolvono: la globalizzazione, la tecnologia e il commercio internazionale sono alcune tra le sfide degli ultimi decenni. Ed è proprio la cosiddetta “quarta rivoluzione industriale” che gioca un ruolo fondamentale nel coordinare tutto ciò e nel creare una rete di sistemi connessi in tempo reale. Essa, infatti, porterà principalmente alla produzione industriale del tutto automatizzata e interconnessa. Si tratta di un processo in corso, la cui data d’inizio non è ancora stata stabilita e solo a posteriori sarà possibile indicarne l’atto fondante. Un altro termine spesso usato correlatamente a quello di quarta rivoluzione è “Industria 4.0”. Essa di fatto scaturisce dall’interconnessione e dalla cooperazione di lavoratori e sistemi informatici tipici della rivoluzione stessa. L’espressione fu usata per la prima volta nel 2011 in Germania all’Hannover Messe, la più importante fiera sulle tecnologie industriali. Successivamente, nell’ottobre 2012 un gruppo di lavoro dedicato all’Industria 4.0 e presieduto da Siegfried Dais della multinazionale di ingegneria ed elettronica Robert Bosch GmbH e da Henning Kagermann della Acatech (Accademia tedesca delle Scienze e dell’Ingegneria), presentò al governo federale tedesco una serie di raccomandazioni per la sua implementazione. L’8 aprile 2013, all’annuale Fiera di Hannover, fu diffuso il report finale del gruppo di lavoro (Maci, 2017).
1.3 Le tecnologie della quarta rivoluzione industriale

L’industria 4.0 è una confluenza di tecnologie digitali dirompenti destinate a modificare svariati settori, in particolare il manifatturiero.

Il processo di cambiamento in atto attraversa svariate aziende, dalle più grandi imprese alle PMI, e porta all’adozione di sistemi di lavorazione automatizzati ed intelligenti. La smart factory è proprio questa: un’azienda intelligente in cui l’operatività dell’uomo diverrà sempre meno cruciale.

Grafico 1.1 Le nove tecnologie che stanno trasformando la produzione industriale secondo BCG.

A queste, si possono aggiungere l’app economy, l’ormai prossima era del 5G, l’intelligenza artificiale e il machine learning, senza contare tutte le reti di calcolatori e servizi che consentono, alla base, di tenere tutto sotto controllo.

Prima di descrivere brevemente tutte queste leve, è importante sottolineare il processo di convergenza tra IT (Information Technology) e OT (Operational Technology), due dipartimenti storicamente e intenzionalmente tenuti separati anche se accomunati dalla stessa materia trattata (informatica, reti e sistemi).

Da una parte, il termine IT si riferisce all’uso di qualsiasi computer, sistema di archiviazione, di networking e altri dispositivi fisici, infrastrutture e processi per creare, elaborare, archiviare, proteggere e scambiare dati elettronici in ogni formato\(^1\). In esso includiamo Cloud, Big data e Cyber-security.

Dall’altra parte, quando si parla di industria, la parola chiave è OT. Essa rappresenta convenzionalmente l’insieme di tutti i sistemi e le tecnologie di controllo e

\(^1\)Come riportato in ICT-IT – definizione. Disponibile su: <https://www.economyup.it/glossario/ict-it-definizione/> [Data di accesso: 05/05/2018]
La quarta rivoluzione industriale, la smart factory e le nuove tecnologie

automazione, necessarie al funzionamento degli impianti industriali di qualsiasi azienda manifatturieria (Zuffada, 2017). Includiamo in questa definizione Augmented reality, Additive Manufacturing, Autonomous robots, Simulation, Horizontal and Vertical systems Integration e Industrial IoT.

A questo punto, è opportuna una breve definizione di tutte queste innovazioni, partendo da due elementi che sono considerati di maggiore importanza: IIOT e Big Data.

INDUSTRIAL IOT (IIOT): Lo IIOT è la base dell’interconnessione all’interno della fabbrica intelligente. Consiste in un network di devices, quindi nell’applicazione di sensori collegati e altri dispositivi a veicoli e macchinari che permettono comunicazione multidirezionale ed interattività tra diversi processi produttivi. Sostituire le macchine tradizionali con gli oggetti dell’Internet of Things consente alle imprese di tenere sotto controllo in tempo reale tutti i processi aziendali e di raccogliere i dati da utilizzare in molteplici modi, in particolare per prendere decisioni.

BIG DATA: Consentono di effettuare delle analisi predittive, ossia di fare sia previsioni che simulazioni. I grandi data sets provengono da svariate fonti, siano esse macchinari o sistemi, e sono essenziali per supportare le decisioni in real-time e per fronteggiare possibili problemi futuri.

CLOUD COMPUTING: Secondo la casa di Redmond (Microsoft) il cloud computing è “la distribuzione di servizi di calcolo, come server, risorse di archiviazione, database, rete, software, analisi e molto altro, tramite Internet (“il cloud”). Le società che offrono questi servizi di calcolo sono dette provider di servizi cloud e in genere addebitano un costo per i servizi di cloud computing in base all’utilizzo, in modo analogo alle spese domestiche per acqua o elettricità” (Torchiani, 2018).

CYBER SECURITY: Sinonimo di sicurezza informatica, comprende la parte dell‘information security (sicurezza delle informazioni, ovvero minacce alla privacy,
sicurezza informatica) che dipende esclusivamente dalle tecnologie informatiche. È quindi strettamente collegata all’IT.

AUGMENTED REALITY: Principalmente connessa all’utilizzo di tecnologie wearable (Smart Glasses, etc.), è caratterizzata dall’emersione di informazioni relative a ciò che ci circonda. I dati vengono aggiunti alla realtà fisica circostante in forma di numeri, testi, notifiche sovrapposte a quello che vediamo. Inoltre, è possibile fare foto e video streaming. Questo argomento sarà affrontato più nello specifico nei seguenti capitoli.

È inoltre importante evidenziare l’esistenza di **VIRTUAL REALITY** e **MIXED REALITY**. La prima, tramite l’uso di visori, permette di immergersi in mondi virtuali a 360° proiettati in stereoscopia sui due display posti in corrispondenza degli occhi. La seconda sovrappone realtà aumentata e virtuale per osservare il mondo reale che ci circonda traendone informazioni utili (in AR), ma anche vedendo e muovendo oggetti virtuali come fossero reali.

ADDITIVE MANUFACTURING (AM): L’esempio più comune riguarda la stampa 3D. Con AM si intendono infatti le tecnologie che generano oggetti 3D convertendo l’input di un sistema informatico in qualcosa di fisico. Questi sistemi, se decentralizzati, riducono le distanze di trasporto e le scorte disponibili. Inoltre, permettono di produrre prodotti costumizzati di piccole dimensioni e dal design leggero ma complesso.

AUTONOMOUS ROBOTS: I nuovi robot potranno cooperare con gli umani, apprendere nuove funzionalità grazie al machine learning e auto istruirsi per divenire man mano più efficienti. Con il passare degli anni il livello di autonomia nei robot sta aumentando esponenzialmente e questo porterà ad una grande riduzione dell’errore umano.

SIMULATIONS: Sono uno strumento sperimentale di analisi molto utilizzato nella fase di ingegnerizzazione. Si tratta di simulazioni 3-D di prodotti, materiali, processi di produzione ed operazioni che enfatizzano l’utilizzo di dati in tempo reale per riprodurre il mondo fisico in un modello virtuale in cui ricomprendere macchine, prodotti, persone.

HORIZONTAL AND VERTICAL SYSTEMS: La maggior parte dei sistemi IT odierni non permette di collegare direttamente aziende, fornitori e clienti, né singoli reparti o singole operazioni interne. Grazie all’Industry 4.0, aziende, dipartimenti, funzioni e singole funzionalità diventeranno molto più coesive, poiché reti di integrazione interne ed esterne all’azienda evolveranno e consentiranno catene di valore integrate ed
La quarta rivoluzione industriale, la smart factory e le nuove tecnologie

automatizzate. Ad esempio, Dassault Systèmes e BoostAeroSpace hanno lanciato una piattaforma di collaborazione per l’industria aerospaziale e la difesa europee. La piattaforma AirDesign funge da spazio di lavoro comune per collaborare nella progettazione e produzione grazie ad un servizio su cloud privato. In questo modo, dati su prodotto e produzione tra più partner vengono scambiati in modo semplice e in tempo reale.

APP ECONOMY: L’insieme delle attività economiche legate alle applicazioni mobile. Questo fiorente business comprende lo sviluppo e la vendita di app, gli investimenti pubblicitari in-app e gli acquisti sugli app-store.

ERA DEL 5G: Tecnicamente, l’aspirazione per il 5G è di fornire velocità una velocità di connessione maggiore rispetto alle vecchie tecnologie 2G, 3G e l’attuale 4G. Tuttavia, più nello specifico, gli anni post-2020 saranno conosciuti come l’era della connettività senza confini e dell’automazione intelligente, arricchendo la vita delle persone e trasformando i processi industriali. Le reti 5G si integreranno con le tecnologie di rete 4G e alternative, per fornire una connettività pervasiva. Ciò avverrà con il progredire di scoperte ed evoluzioni nel campo del calcolo, dell’intelligenza artificiale e delle capacità dei dispositivi (GSM Association, 2017).

INTELLIGENZA ARTIFICIALE: L’abilità di un sistema tecnologico di risolvere problemi o svolgere compiti e attività tipici della mente e dell’abilità umane. Guardando al settore informatico, potremmo identificare l’AI – Artificial Intelligence come la disciplina che si occupa di realizzare macchine (hardware e software) in grado di “agire” autonomamente (risolvere problemi, compiere azioni, ecc.).

1.4 La smart factory

Parlare di tecnologie IT e OT, di industria 4.0 e di tutto questo mondo in cui l’informatizzazione è la chiave di lettura, porta ad approfondire il tema della “Smart Factory” e dei nuovi modelli di business.

La fabbrica si presenterà come un luogo sempre più tecnologico e complesso che poggia su un requisito sostanziale: l’interconnessione tra tutti gli assetts con uno scambio continuo di informazioni e dati, sia all’interno che all’esterno dell’azienda. Molte sono le definizioni di “Industry 4.0”, una delle quali è “L’industria 4.0 coinvolgerà l’integrazione tecnica dei CPS (Cyber Physical Systems) nella manifattura e nella logistica e l’utilizzo dell’Internet of Things nei processi industriali” (KAGERMANN et al., 2013). Partire da questa definizione porta ad individuare CPS e IoT come protagonisti della fabbrica del futuro.

1.4.1 I Sistemi Cyber Fisici

I Sistemi Cyber Fisici sono una delle tecnologie chiave della quarta rivoluzione industriale grazie alla loro potenzialità di creare valore lungo le tre dimensioni della digitalizzazione del manifatturiero: smart product, smart manufacturing e cambiamenti nei business model delle aziende.

Si tratta di un insieme di macchine intelligenti ed interconnesse che tramite sensori integrati, attuatori di decisioni correttive e connessione di rete, creano un sistema intelligente ed auto comunicante in grado di generare dati di vario genere, di facilitare l’integrazione e di diminuire le asimmetrie informative tra soggetti diversi e fisicamente distanti. I CPS si basano su oggetti fisici e la loro immagine virtuale (“Cyber”). Essa risiede nel mondo dell’Information & Communication Technology (ICT) ed è il risultato dell’interazione tra IoT, realtà aumentata e cloud computing. L’acquisizione di dati, la loro computazione ed aggregazione in tempo reale ed il successivo supporto nel processo decisionale sono i tre scenari sequenziali caratteristici dei CPS (Boschi et al., 2017).

Il nuovo modo di produrre dovrà quindi basarsi sulla capacità dei sistemi di elaborare, trattare e trasmettere informazioni e conoscenze in tempo brevissimo per adattarsi alle nuove esigenze e richieste dei clienti. La produzione sarà organizzata autonomamente ed automaticamente.
La quarta rivoluzione industriale, la smart factory e le nuove tecnologie

Da qui nasce il concetto di smart factory: impianti flessibili e multifunzionali grazie all’implementazione dei CPS, in grado di garantire elevati livelli di efficienza e di monitorare gli andamenti di mercato per mezzo dell’integrazione tra impresa ed ambiente esterno in un’unica catena del valore.

1.4.2 La fabbrica intelligente

Oracle identifica i punti chiave della fabbrica intelligente in:

- Interconnessione e interoperabilità tra sensori, persone, macchine e ambienti.
- Possibilità di sviluppare logiche di Digital Twin, ovvero copie virtuali e fedeli di progetti e problematiche reali.
- Automazione delle attività di assistenza attraverso sistemi che possono supportare le persone nella gestione di task “trasferibili” alle “macchine”.
- Decentralizzazione delle decisioni con soluzioni e device che sono nella condizione di assumere e gestire livelli decisionali in autonomia sulla base di regole predefinite (Bellini, 2018).

Si tratta però di un luogo ideale che ancora esiste solo su carta, bensì molte aziende stiano lavorando per far diventare questo progetto realtà.

Una recente indagine Ucimu-Sistemi per produrre ha sottolineato che oggi il parco macchine delle aziende italiane ha un’età media di quasi 13 anni. Un dato molto elevato, in cui rientrano anche picchi di macchinari con 20 anni di età (Garbellano, 2016). In moltissime imprese convivono diverse generazioni di macchinari oltre che di persone. È evidente come, se possiamo dire sia difficile dialogare tra persone di svariate età, è probabilmente ancora più complesso integrare macchine progettate con logiche molto distanti nel tempo tra loro, per lo più se non sempre sottoposte alla corretta manutenzione e sovrautilizzate. Ecco che le nuove fabbriche hanno imposto la riprogettazione dei principali processi aziendali. La logica just in time dei fornitori è la chiave di lettura dell’innovativa modalità di produzione. A seguire (Grafico 1.2), un’immagine tratta dall’articolo della Roland Berger “Industria 4.0, la nuova frontiera

della competitività industriale in Italia” (2016), società tedesca leader in consulenza strategica ed aziendale.

Grafico 1.2 La fabbrica 4.0 del futuro.

Nonostante ci vorranno ancora anni per arrivare a questo modello ideale, già oggi persone, macchinari e attrezzature sono collegate anche a migliaia di kilometri di distanza. Mettersi in contatto con un collega che si trova dall’altra parte del mondo è un’operazione semplice e a basso costo. Un esempio pratico è l’assistenza in remoto tramite dispositivi Smart Glasses tra la workforce e l’esperto, ma anche smartphone e tablet giocano un ruolo fondamentale, se non principale, nella connessione.

1.4.3 Il nuovo modello di business

Come riportato in “Creare modelli di business” di Alexander Osterwalder e YvesPigneur (2010), un modello di business descrive la logica in base alla quale

[Fonte: Roland Berger, 2016]
un’organizzazione crea, distribuisce e cattura valore. Ma come avviene ciò nelle fabbriche intelligenti?
Il vecchio sistema gerarchico e piramidale sta evolvendo verso un modello di business a ragnatela, emblema dell’interconnessione:

- da processi definiti e funzionali a flessibilità e condivisione. Attraverso la condivisione di informazioni tramite cloud e la collaborazione, i processi sono resi più flessibili, efficaci ed efficienti.
- da una struttura gerarchica ferrea a rapporti simmetrici interni ed esterni all’azienda. La comunicazione tra forza lavoro, clienti, fornitori e partner è simmetrica. Non ci sono più evidenti gerarchie e nel team aziendale ognuno assume maggiore autonomia decisionale.
- da comunicazione formale ad aperta. Le informazioni diventano disponibili sempre ed in ogni momento per tutti, internamente ed esternamente.
- da processi di innovazione chiusi all’apertura a collaborazioni, anche esterne. L’innovazione diventa aperta.
- dallo scopo di fatturare e mantenere salda la propria posizione nel mercato e i propri clienti allo scopo di creare valore e nuove alleanze. Si segue in questo modo un processo di innovazione disruptive.

Il Grafico 1.3 illustra con uno schema più preciso il nuovo modello e permette di approfondirne gli aspetti cruciali.

Grafico 1.3 Il modello di business a ragnatela.
1.4.4 Le nuove opportunità

Per identificare le giuste opportunità della rivoluzione per le varie industrie, la multinazionale McKinsey ha sviluppato un “Digital Compass” nel suo report “McKinsey digital/Industry 4.0 model factories” (2016). L’azienda, negli anni, ha lavorato su numerosi progetti di digitalizzazione con svariati clienti, riuscendo ad immagazzinare molti dati (Big Data Analysis).

Dal Compass (Grafico 1.4) è possibile identificare i seguenti trend:

- Aumento della produttività del 3–5% grazie a maggiore efficienza energetica, Iots e ottimizzazione dei processi produttivi in real-time.
• Riduzione dei tempi di fermo macchina del 30-50% grazie ad asset più flessibili, realtà aumentata e manutenzione predittiva.
• Aumento della produttività nelle professioni tecniche del 45-55% attraverso l’automazione della conoscenza, la collaborazione uomo-macchina e i controlli in remoto.
• Riduzione dei costi di inventario del 20-50%.
• Riduzione dei costi di controllo della qualità del 10-20% grazie a modalità avanzate e tecnologiche per eseguire il “quality” management.
• Aumento dell’accuratezza nelle previsioni dell’85% grazie alla stretta connessione domanda-offerta.
• Riduzione del Time To Market (TTM) del 20-50%. Il tempo che intercorre tra ideazione e commercializzazione di un prodotto diminuisce grazie ad innovazione aperta, progettazione, sperimentazioni e simulazioni.
• Riduzione dei costi di manutenzione del 10-40% grazie ai tecnologici servizi post-vendita (assistenza in remoto, manutenzione predittiva e realtà aumentata e virtuale).

A ciò potremmo aggiungere, come previsto dal Boston Consulting Group, le previsioni di:
• Aumento del reddito alle aziende digitalizzate.
• Aumento degli investimenti tecnologici.
• Aumento dell’occupazione (argomento affrontato nel paragrafo 1.6.2).

Infine, secondo le analisi di Marco Annunziata, capo economista di General Electric, il valore dell’Internet applicato ai processi produttivi supererà gli 11.1 miliardi di dollari nel 2025 più del doppio del valore dell’e-commerce (Annunziata, 2015).

1.5 Il ruolo dell’uomo

1.5.1 Customer experience

È evidente come la quarta rivoluzione industriale ed il nuovo paradigma di produzione caratterizzato dalla possibilità di indossare dispositivi connessi (realtà aumentata e virtuale) e di dotare di interfacce cyber-fisiche sia oggetti di vita quotidiana (dagli elettrodomestici ai veicoli) che beni di consumo, stia rivoluzionando dalla base le
aziende e la loro cultura. Non si parla solo di maggiori livelli di efficienza nell’utilizzo di impianti flessibili e multifunzionali, di monitoraggio dei mercati e dialogo con i clienti a costi limitati, ma anche di un significato completamente diverso delle nozioni di marketing, vicinanza e orientamento al cliente. In quest’ottica, l’integrazione tra imprese e consumatori, tra fabbrica e società, è essenziale per soddisfare la domanda e i bisogni sempre più specifici dei consumatori.

Una grande sfida risiede nella capacità di unire da una parte la digitalizzazione delle operations e dall’altra i processi di digitalizzazione della customer experience. Solo la convergenza tra questi due vettori di innovazione interni ed esterni è la chiave per la riuscita di un vero e proprio digital business. Per fare ciò, l’industria 4.0 mette a disposizione tecnologie digitali che stanno portando ad una produzione di massa sempre più capace di incorporare variazioni del prodotto finale, talvolta personalizzate, nel processo di produzione, senza causare un aumento eccessivo dei costi.

Geert Ostyn, vice-presidente di Picanol (azienda produttrice di macchine per la tessitura), conferma in questo discorso le attuali possibilità di rispondere alle esigenze di velocità e personalizzazione dei clienti:

While in the past, every new customer request would disrupt the production flow; so to speak, now, in the age of Industry 4.0, we can turn that variability itself into an asset. It is the intersection of mass production and the one-off product. Digital technology has a facilitating role to play here by providing the right information at the right time. Only this way we will be able to wait until the last minute to implement whatever is optional.

1.5.2 Gli effetti sul mercato del lavoro

L’industria 4.0, quindi, ha una retorica, una tecnologia, un modello di consumo (la personalizzazione di massa). Si hanno infatti a disposizione le tecnologie digitali per favorire il rinnovamento del capitalismo industriale, ma non è ancora prevedibile come la fabbrica intelligente, puntando ad abbattere i confini con l’ambiente sociale e sfruttando le connessioni tra interno ed esterno, possa realmente ridefinire le regole che

3 Disponibile su <https://proceedix.com/resources/picanol-puts-industry40-principles-practice-operator-info-project> [Data di accesso: 05/05/2018]
La quarta rivoluzione industriale, la smart factory e le nuove tecnologie

struttureranno i mercati del lavoro, le relazioni industriali, i flussi finanziari e logistici ed i nuovi modelli di consumo.

Focalizzandosi sul lavoro ed il ruolo dell’uomo nell’azienda, è importante sottolineare come laddove oggi le competenze tecniche, l’esperienza, il giudizio umano e la discrezione sono obbligatori, anche per processi di produzione altamente automatizzati, tutto cambierà.

La ricerca “The Future of Jobs” presentata al World Economic Forum ha evidenziato come, nei prossimi anni, fattori tecnologici e demografici influenzeranno profondamente l’evoluzione del lavoro. In particolare, nei prossimi 2-3 anni vi saranno 2 milioni di nuovi posti di lavoro, anche se contemporaneamente ne spariranno 7, con un saldo netto negativo di oltre 5 milioni di posti di lavoro. L’Italia sembra ne uscirà con un pareggio, con 200 mila posti creati e altrettanti persi.

Con la rapida evoluzione dello scenario, stanno cambiando le competenze e abilità ricercate: nel 2020 il problem solving rimarrà la soft skill più ricercata, ma acquisiranno maggiore importanza anche le competenze digitali, il pensiero critico, la creatività e la capacità di relazione. Ecco perché a livello di amministrazione e produzione ci saranno i maggiori picchi di perdita di lavoro, ma area finanziaria, manageriale, informatica ed ingegneristica saranno sempre più ricercate.

Per quanto riguarda l’Italia, Alessandro Perego, Direttore Scientifico degli Osservatori Digital Innovation del Politecnico di Milano, afferma⁴:

Nel breve termine si possono prevedere saldi occupazionali negativi, nel medio-lungo termine non è assolutamente certa una contrazione degli occupati in numero assoluto, considerato anche l’impatto nell’indotto, in particolar modo nel terziario avanzato. Il nostro Paese però deve sapere cogliere a pieno i benefici della quarta rivoluzione industriale, attuando iniziative sistemiche per lo sviluppo dello Smart manufacturing e fornendo ai lavoratori le competenze digitali per le mansioni del futuro.

⁴ Disponibile su <https://proceedix.com/resources/picanol-puts-industry40-principles-practice-operator-info-project> [ultimo accesso: 05/05/2017]
Considerando infatti le analisi del Boston Consulting Group sull’impatto dell’industria 4.0 sulla manifattura tedesca, l’occupazione aumenterà del 6% nei prossimi 10 anni (Maci, 2017). Operai con povere potenzialità verranno rimpiazzati da lavoratori con conoscenze sullo sviluppo di software e dell’IT.

Anche i ricercatori della European House Ambrosetti hanno fatto delle ricerche su questo tema in Italia ed i risultati indicano che il 14,9% del totale degli occupati, ossia 3,2 milioni di persone, potrebbe perdere il posto di lavoro nei prossimi 15 anni. Allo stesso tempo, la perdita di occupazione generata dall’innovazione tecnologica ha anche effetti positivi poiché abilita la creazione di nuove professioni e quindi occupazione. Secondo la ricerca, per ogni posto di lavoro creato nei nuovi settori, vengono generati ulteriori 2,1 posti di lavoro nell’indotto.

Per creare nuovi posti di lavoro ad alto valore aggiunto, Ambrosetti ha formulato due proposte per gestire il cambiamento, che sono valide per l’Italia, come per gli altri Paesi industrializzati. La prima riguarda l’incentivazione degli investimenti per l’Industria 4.0 per far sì che l’Italia si collochi come early adopter delle innovazioni tecnologiche. La seconda proposta riguarda la promozione di attività di formazione (universitaria e post-laurea) e aggiornamento permanente su temi legati alle nuove tecnologie (Da Rold, 2017).

1.6 Conclusioni

Da questo capitolo è stato possibile notare come la tecnologia stia cambiando il mondo in cui viviamo. Il futuro sarà caratterizzato da miglioramenti e scoperte continue, accompagnati da una connettività sempre più diffusa e sicura. Le aziende stanno diventando intelligenti, adoperandosi per adattarsi ai nuovi modelli di business ed ai cambiamenti del mercato in generale. Dati, potenza di calcolo e connettività, analisi ed intelligenza artificiale, interazione uomo macchina e conversione al mondo fisico saranno gli elementi fondanti del processo di cambiamento destinati a mutare in modo radicale principalmente il settore manifatturiero. Questo perché i processi produttivi e la loro digitalizzazione assumeranno un ruolo rilevante, mentre un filo rosso costituito da dati e informazioni continui permetterà di monitorare i clienti e soddisfarli. La quarta rivoluzione industriale porta con sé innumerevoli nuove tecnologie ed allo stesso tempo numerosi vantaggi sia in efficienza ed efficacia operativa, che a livello umano. Non
La quarta rivoluzione industriale, la smart factory e le nuove tecnologie

mancano ovviamente le discussioni in tutta questa ondata positiva di innovatività, in particolare la questione sulla futura disoccupazione dell’uomo. Esso sarà via via sempre più sostituito dalle macchine, ma allo stesso tempo nasceranno nuovi tipi di occupazioni richiedenti elevate specializzazioni e competenze tecniche.
2. CAPITOLO SECONDO

LA REALTÀ AUMENTATA, UN NUOVO MODO PER AUMENTARE EFFICIENZA ED EFFICACIA IN UN MONDO CONNESSO

2.1 Premessa

La realtà aumentata (AR) è una delle tecnologie che si trovano all'interno dell'ecosistema dell'IoT. Insieme ad altri acceleratori di innovazione quali intelligenza artificiale (AI), robotica, Big Data e dispositivi indossabili, permette di guidare l'efficienza operativa, trasformare settori consolidati e creare nuove opportunità di business.

Innanzitutto, nel capitolo verrà fornita una descrizione delle wearable technologies e della realtà aumentata in generale. Verrà poi analizzato come e perché le “smart factories” del futuro, gli operatori dei servizi pubblici come i vigili del fuoco, dottori ed infermieri negli ospedali, faranno tesoro della realtà aumentata abbinata all’uso di smart glasses. Molti sono infatti i benefici derivanti da questa nuova tecnologia, dall'efficienza a livello di costi, alla miglior formazione e assistenza anche a lunghe distanze.

2.2 Le wearable technologies

Le tecnologie Wearable, chiamate anche Smart Wearables o semplicemente Wearables, sono definite come piccoli dispositivi elettronici, spesso costituiti da uno o più sensori e dotati di capacità computazionale (Macintosh, Rajakulendran e Salah, 2014). Si tratta di oggetti indossabili in svariate parti del corpo, quali testa, piedi, braccia e polsi, capaci di immagazzinare una grande quantità di dati. Le informazioni raccolte possono essere sia semplici, come il numero di passi compiuti in un giorno, che complesse, come le misurazioni dei battiti cardiaci o delle onde cerebrali (Figura 2.1).
Tra queste tecnologie includiamo principalmente Smart Glasses, Helms, orologi, localizzatori, vestiti. Si tratta di veri e propri “aiutanti” dell’uomo piuttosto che di dispositivi per la semplice comunicazione, i cui benefici sono evidenti: piccoli, indossabili quasi in ogni tipo di ambiente, contengono dati personalizzati e possono essere integrati in “network” di comunicazione facilitando il controllo remoto.

Le Smart Wearables giocano sempre più un ruolo essenziale sia nel mercato del consumatore che in campo industriale. Basti pensare, per esempio, da una parte agli orologi sportivi o agli Helms per il gioco in realtà virtuale, dall’altra agli Smart Glasses e alla realtà aumentata nelle aziende. A sostegno di questo importanza sempre più diffusa, ricerche industriali mostrano come il mercato mondiale delle tecnologie wearable sia in grande ascesa, stimando una crescita da US$ 16 miliardi nel 2016 a circa US$ 73 miliardi nel 2022, con un ammontare di dispositivi che passerà da 325 milioni nel 2016 a 929 milioni nel 2022 (Statista, 2018).

2.3 La realtà aumentata

Il concetto di realtà aumentata è stato introdotto per la prima volta nel 1992 per denotare un display "a testa scoperta" che Caudell e Mizell avevano progettato. Essi hanno descritto il concetto come segue:

![Diagramma della realtà aumentata](image-url)
Questa tecnologia è utilizzata per 'aumentare' il campo visivo dell'utente con le informazioni necessarie nell'esecuzione dell'attività corrente e pertanto ci riferiamo a tale tecnologia come 'realtà aumentata' (Caudell e Mizell, 1992). Azuma (Azuma, 1997) definisce la realtà aumentata in modo diverso, ossia come un sistema con tre caratteristiche: (a) la capacità di combinare oggetti reali e virtuali, (b) la capacità di essere interattivi in tempo reale e (c) la capacità di utilizzare oggetti 3D. Esempi di informazioni che possono essere sovrapposte all'ambiente reale sono immagini, audio, video e sensazioni tattili. È proprio in questa sovrapposizione alla realtà che AR e VR si differenziano, in quanto nel secondo caso gli utenti sono completamente immersi in un mondo virtuale e non riescono a vedere il mondo reale che li circonda.

Oggi, l'ampia adozione della AR è principalmente abbinata all’utilizzo di smartphone e tablet nei giochi, negli sport e nel turismo. Ricordiamo a tal proposito l’impatto dirompente che la realtà aumentata ha avuto sul mondo nel 2016 con il popolare gioco Pokemon Go. Ciò non toglie che gli smart glasses a livello di funzionalità e praticità potrebbero presto rimpiazzare smartphone e tablet (Syberfeldt, Danielsson e Gustavsson, 2017).

Facendo riferimento alle origini della AR, ancora prima di conquistare l’intero settore mobile, ossia smartphone, laptop, tablet, occhiali e visori abbinati ad apposite applicazioni e software, ha mosso i primi passi in ambiti molto tecnici e specifici. Dal settore militare a quello della ricerca scientifica, ma anche nella medicina. Il primo caso, infatti, è identificabile negli aerei da combattimento per permettere ai piloti di vedere dati di volo (quota e velocità del velivolo, distanza dall’obiettivo) senza distogliere lo sguardo dalla guida5. Successivamente, lo sviluppo in ambito industriale è stato rapido. Grazie alle più recenti innovazioni dell’industria 4.0, la realtà aumentata ha iniziato ad essere considerata una delle più importanti tecnologie in cui le aziende dovrebbero investire, in particolare per migliorare i servizi di manutenzione (questo argomento sarà approfondito nel paragrafo 2.4.1).

5 Come riportato in Cos’è la realtà aumentata e come trasformerà la nostra vita. Disponibile su: <https://tecnologia.libero.it/cose-la-realta-aumentata-1054> [Ultimo accesso: 25/05/2018]
all'anno, esamina i mercati della realtà aumentata e virtuale con una prospettiva di cinque anni. Nelle analisi sono considerati dati da sei stati, 12 industrie, 18 casi-uso e 10 categorie di tecnologie. Secondo quanto riportato nel 2017, il mercato dei prodotti e dei servizi AR/VR crescera a ritmi vertiginosi nel prossimo triennio, passando dagli 11,4 miliardi di dollari registrati a fine 2017 ai quasi 215 miliardi che si registreranno nel 2021, pari a una crescita media annua composita (CAGR) del 113,2%.

I visori VR rappresenteranno entro il 2019 oltre il 90% dei device venduti e il rimanente sarà da attribuire agli headset per la realtà aumentata. IDC, però, prevede che questi ultimi nel biennio 2020-2021 crescano fino ad arrivare a rappresentare entro la fine del 2021 un terzo del mercato. “Le vendite di visori AR genereranno entro il 2021 un fatturato di oltre 30 miliardi di dollari, quasi il doppio di quello relativo ai visori VR poiché hanno prezzi medi molto più alti”, commenta Jitesh Ubrani, senior research analyst per IDC Mobile Device Trackers.

Grafico 2.1 I settori industriali top nel 2017 del mercato ARVR.

La realtà aumentata, un nuovo modo per aumentare efficienza ed efficacia in un mondo connesso

In termini di casi di utilizzo industriale (Grafico 2.1) e non considerando il mercato dominante del consumatore specialmente per la VR, la spesa ARVR nel 2017 è stata guidata dall’applicazione nella manutenzione industriale e nello sviluppo del prodotto (manifattura), oltre che nei trasporti. Il retail e i servizi pubblici (in particolare l’assistenza sanitaria) saranno i casi di utilizzo industriale in più rapida crescita nei prossimi quattro anni. Andrea Siviero, Responsabile della ricerca IDC, European Insight and Analysis ha affermato:

L’applicazione industriale dell’AR sta evolvendo e si prevede che la sua adozione aumenterà rapidamente, in particolare in quei settori basati sul lavoro sul campo, come la produzione, i trasporti e i servizi pubblici, mentre la VR è ancora fortemente limitata al settore dei giochi / divertimento i fornitori devono fare uno sforzo per dimostrare ulteriormente i casi aziendali e ampliare la copertura e l’utilizzo industriale_.

2.3.1 Realtà aumentata e smart glasses

Gli smart glasses per la realtà aumentata (ARSG) sono sempre più popolari, tanto da essere identificati come una tecnologia vitale per gli operatori nelle fabbriche intelligenti del futuro. Tra il 2016 e il 2022 la crescita annua delle spedizioni di questi dispositivi è infatti esponenziale (Grafico 2.2).

Grafico 2.2 Mercato mondiale ARSG.

[Fonte: Tractica, 2017]

Molte aziende sono impegnate in quella che viene chiamata la “rivoluzione AR”, in particolare per favorire operazioni di assemblaggio, manutenzione, controllo di qualità e gestione dei materiali. Il motivo del boom è che gli smart glasses sono considerati più efficienti di altri dispositivi per la realtà aumentata in quanto mobili, facilmente indossabili e utili per lavorare con due mani libere, senza dover far uso di oggetti terzi quali manuali, guide e tablet. Sono in grado di aumentare la percezione visiva quando e dove necessario con contenuti generati dal computer, come parole, simboli, immagini e oggetti visibili semplicemente guardandosi attorno (Figura 2.2). Utilizzando il riconoscimento degli oggetti basato sulla fotocamera, infatti, gli ARSG possono rilevare l'oggetto specifico che l'utente sta guardando, fornendo informazioni sensibili al contesto adattate dinamicamente alla situazione specifica. Permettono inoltre di scattare foto, girare video e fare registrazioni in tempo reale. Equipaggiare gli operatori con ARSG consente quindi di fornire automaticamente le informazioni esatte necessarie, al momento e nel luogo giusto, per gestire in modo ottimale una situazione specifica o un'attività lavorativa (Syberfeldt, Danielsson e Gustavsson, 2017).
La realtà aumentata, un nuovo modo per aumentare efficienza ed efficacia in un mondo connesso

Figura 2.2 La realtà aumentata nella realtà

[Fonte: Youtube, 2016]

Ci sono molti venditori di ARSG e una vasta gamma di prodotti tra cui scegliere sul mercato, ma nonostante questa disponibilità generale, pochissime aziende manifatturiere hanno adottato ARSG, per varie cause. In primo luogo, il basso performance/cost ratio di hardware e software in commercio. I prodotti in commercio sono altamente costosi ed eterogenei in design, tecnologia e funzionalità e rendono molto difficile valutare i loro punti di forza e di debolezza da una prospettiva olistica per il confronto. Questa vasta gamma di prodotti eterogenei rende l'identificazione del prodotto ottimale complicata e dispendiosa in termini di tempo. Inoltre, gli occhiali sono spesso difficili da indossare per molte ore a causa del peso e la durata non ottimale delle batterie, e necessitano di ulteriori sviluppi a livello di tecnologia e sensori (Masoni et al., 2017).

Al netto degli iniziali difetti, i vantaggi che tali tecnologie sapranno apportare nei prossimi anni saranno tali da rendere questo caratteristico wearable device un must-have per innumerevoli professionisti ed operatori nei più diversi settori dell’economia. Secondo uno studio di Forrester del 2016, la maggioranza dei tecnici, ingegneri, riparatori, operatori e infermieri utilizzeranno Smart Glasses e realtà aumentata entro il 2025 negli Stati Uniti. In particolare, hanno identificato 14 benefici collegati a tale tecnologia: apprendimento attivo, risoluzione dei problemi complessi, manutenzione delle attrezzature, installazione, istruzione, matematica, monitoraggio, funzionamento e
controllo, monitoraggio del funzionamento, analisi delle operazioni, analisi del controllo qualità, riparazione, gestione del tempo, risoluzione dei problemi. Non è possibile la sola consultazione di manuali e guide interattive per formare il nuovo operatore e aggiornare il più veterano, o la semplice indicazione delle istruzioni da seguire direttamente negli oggetti, ma anche il controllo remoto a distanza grazie al video streaming. In questo ultimo caso l’operatore esperto riesce a vedere in diretta ciò che l’operatore sul campo ha davanti, indicando ciò che deve fare. Notevoli diminuzioni di costi e tempi, a cui è possibile aggiungere la miglior precisione ed efficienza sono dei punti cruciali (Ghidotti, 2018).

2.4 Le applicazioni pratiche

Sono molti i settori in cui la combinazione hardware (smart glasses) – software può essere applicata e molti sono i casi di grandi aziende che già ne sfruttano le enormi potenzialità. Primo fra tutti, con particolare riferimento alle future smart factory, il manifatturiero. Basti ricordare Boeing (capitolo 3), BMW, o Coca Cola. Ciò non toglie importanza al settore logistico (DHL), all’healthcare, al retail, e-commerce ed altri.

2.4.1 Il settore manifatturiero

Al giorno d’oggi il settore della manifattura sta affrontando sfide significative. La sicurezza, l’efficienza e la massima disponibilità al minimo costo sono obiettivi principali per restare nel mercato, a causa della crescente competitività, dei cicli di vita dei prodotti più brevi, della dispersione geografica delle apparecchiature e della complessità richiesta dai consumatori nei prodotti e servizi offerti. Dall’inizio degli anni ‘90, diversi prototipi di AR hanno già dato buoni risultati in termini di efficienza operativa e riduzione del rischio di incidenti, dimostrando che questa tecnologia può migliorare l’implementazione della manutenzione, in particolare.

La “manutenzione” è l’attività principale del ciclo di vita di un prodotto, in quanto conta per circa il 60 – 70% del costo totale. Parlare di manutenzione significa considerare tutte le fasi di creazione del prodotto, dall’assemblaggio all’assistenza post-vendita, includendo anche la riparazione dei macchinari utilizzati (Mourtzis et al., 2015). Pensando quindi alla realtà aumentata nella manifattura, si considerano:
La realtà aumentata, un nuovo modo per aumentare efficienza ed efficacia in un mondo connesso

- l’operatore che nelle fasi di montaggio o riparazione di macchinari riceve le istruzioni davanti ai propri occhi riguardo a come operare, che pulsanti schiacciare e con quale ordine;
- l’operatore che utilizza gli occhiali per registrare codici nel magazzino in modo da avere lo stretto controllo dei prodotti e delle materie prime in entrata e in uscita. L’inventario, in questo modo, rimane sempre aggiornato.
- l’operatore che deve essere formato o aggiornato. Tramite guide interattive e indicazioni è possibile sia istruire il nuovo lavoratore, che aggiornare il più esperto.
- l’operatore/cliente e l’esperto in contatto tramite assistenza remota a distanza (Grafico 2.3). L’operatore sul campo, grazie agli occhiali, scatta foto e registra video in streaming che vengono proiettati nello schermo dell’esperto. In questo modo l’operatore riceve assistenza in tempo reale, costi e tempi di trasferta e formazione vengono abbatuti, riducendo al minimo anche gli errori possibili commettibili⁸.

Grafico 2.3 Assistenza remota.

[Fonte: ScienceDirect, 2017]

⁸ Informazioni ricavate da http://www.visionlabapps.com/ [Data di accesso: 05/05/2018]
La realtà aumentata permette quindi di controllare lo stato corrente di un magazzino o di una linea di produzione, consentendo il monitoraggio costante dello stato attuale, della comunicazione e della pianificazione (Kollatsch et al., 2014). Costi e tempi si abbassano, tutti i dati sono più precisi, la possibilità di errore viene abbatuta, gli operatori risultano più motivati grazie alla maggior sicurezza nell’eseguire il proprio compito. Possiamo quindi dire che il downtime, ossia tutti i possibili sprechi del ciclo di produzione riguardanti i tempi di fermo impianto, si abbassa (Masoni et al., 2017).

Lo stesso Michael Terrell, direttore del programma di gestione Coca-Cola Refreshments, ha rivelato all’AWE Europe 2017 come l’azienda stia utilizzando la realtà aumentata e l’apprendimento automatico per posizionarsi meglio nel percorso di crescita. Questa tecnologia gli permette di ridurre i viaggi tecnici, diminuisce i tempi di fermo impianto e produce risultati di qualità superiore⁹.

2.4.2 Healthcare

Gli Smart Glasses indossabili con funzionalità video e audio permetteranno nuove opportunità di formazione e collaborazione per i professionisti del settore medico. Gli utenti saranno in grado di consultare e aggiornare cartelle cliniche in tempo reale e filmare le procedure mentre vengono eseguite, creando efficaci materiali di formazione medica. Inoltre, chi li indossa può connettersi con altri professionisti, con l’opportunità di collaborare in tempo reale durante le procedure, migliorando potenzialmente i risultati finali.

2.4.3 Servizi e logistica

A tal proposito è opportuno ricordare DHL, azienda leader mondiale nella logistica. Essi utilizzano un processo di catena di approvvigionamento chiamato "order picking", in cui i dipendenti soddisfano gli ordini dei clienti eseguendo, grazie ai Glass, la scansione

dell’articoli dagli scaffali prima di trasferirli in contenitori o carrelli. In questo modo è possibile aggiornare in tempo reale ed in modo preciso e veloce lo stato di avanzamento di tutti gli ordini, tenendo monitorati merci in entrata o uscita, smistamento, nonché l’inventario. Ciò libera inoltre le mani da istruzioni cartacee permettendo agli operatori di ricevere informazioni in tempo reale davanti ai loro occhi10. In ambito professionale, possibili sviluppi riguardano i vigili del fuoco, che saranno in grado di conoscere con precisione il posizionamento degli idranti ancor prima di giungere sul luogo di un incendio e verranno guidati da indicazioni stradali in tempo reale. Gli addetti al traffico aeroportuale, invece, potranno controllare l’elenco dei velivoli in partenza e in arrivo mantenendo gli occhi incollati alle piste di decollo e atterraggio.

2.5 La teoria di Porter e le interdipendenze tra gli attori

2.5.1 Porter

Negli ultimi anni Porter ha spostato la sua attenzione sugli impatti della digital transformation sugli “smart connected product”, le interfacce tra uomo e macchine, le strategie delle imprese e i meccanismi competitivi dei vari settori.

Di questi recenti sviluppi, l’economista americano ha parlato all’edizione 2017 del World Business Forum di Milano. «Le tecnologie informatiche e digitali hanno rivoluzionato prima i processi delle imprese, e poi i prodotti che queste imprese fabbricano e/o vendono. I prodotti ora integrano processori e sensori, e questo cambia radicalmente lo scenario competitivo».

Secondo Porter, la più immediata è un’applicazione di realtà aumentata sugli occhiali da vista. Egli infatti afferma di indossare gli occhiali quando guida, quando studia, quando

cucina, quando fa una riparazione, e che in tutti questi compiti la realtà aumentata lo potrebbe aiutare.

Gli Smart Glasses disponibili oggi però non sono efficienti per molte ragioni: sono costosi, pesanti, complicati. La strada da fare è lunga. Ma quando avremo Smart Glasses efficaci ed economici probabilmente tablet e smartphone saranno ormai oggetti inutili, e riceveremo informazioni solo attraverso gli wearables.

L’economista identifica quattro caratteristiche che porteranno al grande salto di qualità: visualizzazione, istruzione/guida, interazione, simulazione. Definisce la realtà aumentata come una “great equalizer”, una parificatrice tra uomo e macchina che “colmerà il gap tra mondo reale e mondo digitale”. L’AR ci permette di “vedere dentro” le cose e gli oggetti, è una tecnologia perfetta per insegnarci le cose, mostrandoci come farle, ci permette di interagire con i prodotti in modo naturale, con gesti e comandi vocali, e simula ambienti e prodotti quando problemi di distanza, tempo o dimensioni non permettono di agire direttamente sugli oggetti reali.

Vediamo ora nel dettaglio le quattro caratteristiche:

- **Visualizzazione:** l’AR permette una “visione a raggi X” che rivela situazioni e funzionamenti interni altrimenti difficili o impossibili da rilevare.

- **Istruzione e Guida:** Costi e complessità di formazione e istruzione sono in grande diminuzione. Questo grazie a guide consultabili in tempo reale, sul campo, permettendo l’insegnamento di funzionamento, montaggio o riparazione di una macchina, per esempio.

- **Interazione.** L’AR consente di superare sia le interfacce fisiche come tasti e leve, che quelle digitali più comuni, come schermi e applicazioni mobili. Ciò è possibile grazie ad un pannello di controllo virtuale riprodotto nella realtà con cui interagire attraverso comandi vocali, gesti o addirittura semplicemente guardando in una certa direzione.

- **Simulazione.** Integrata con la realtà virtuale, l’AR può consentire di simulare l’interazione in ambienti a distanza remota, passati o futuri, piccoli o grandi, ma anche pericolosi (Lazzarin, 2018).
2.5.2 Le interdipendenze tra gli attori

Un focus sull’utilizzo della realtà aumentata per l’indicazione delle procedure da eseguire porta a fare una breve analisi sulle interdipendenze fra gli attori organizzativi e i meccanismi di coordinamento all’interno dell’organizzazione.

Per interdipendenze si intendono “gli scambi o la condivisione di risorse materiali e di informazioni tra gli attori delle unità organizzative o tra diverse unità organizzative interne o esterne, al fine di realizzare le attività operative” (Costa e Gubitta, 2008).

In particolare, possiamo definire come interdipendenzegeneriche quelle tra gli operatori che seguono le istruzioni dai Glass per eseguire il proprio compito specifico. In questo caso gli individui realizzano le proprie attività in maniera del tutto indipendente, contribuendo in tal modo alla realizzazione del fine comune dell’organizzazione. Entra quindi in gioco la standardizzazione dei processi, che consiste nell’individuare delle attività di routine che permettono agli individui di reagire allo stesso modo in presenza di una specifica gamma di eventi. È proprio questa regolarità che porta alla riduzione dell’errore umano, dei tempi ed alla maggiore perfezione e precisione nello svolgere qualsiasi tipo di compito.

Se pensiamo invece all’assistenza remota, dobbiamo parlare di meccanismi di coordinamento basati sul feedback, ossia allo scambio di informazioni e conoscenze in modo diretto (in maniera sia orizzontale che verticale). Secondo Mintzberg, tale tipo di coordinamento si realizza attraverso la supervisione diretta ed il mutuo adattamento. Ed è proprio la supervisione diretta che attiene a questo caso, in quanto attraverso la gerarchia, ordini e direttive indirizzano il comportamento degli individui per coordinarli nelle loro operazioni. È un coordinamento di tipo verticale, che si realizza solo se l’attore che da ordini è formalmente legittimato a fare ciò e ha le conoscenze e competenze tali da poter assumere tali decisioni e risolvere i problemi che emergono dalla realizzazione delle attività dei singoli attori.

2.6 Conclusioni

Da questo capitolo è emerso come l’utilizzo della realtà aumentata in ambiente lavorativo sarà sempre più diffuso e porterà enormi benefici alle aziende che ne faranno uso. Sebbene ci siano ancora miglioramenti da sviluppare ed ostacoli tecnici all’implementazione, gli aspetti positivi superano sicuramente quelli negativi. Non si
parla solo di tagli a costi e tempi, ma anche di maggiore efficienza operativa, minore errore umano, migliore formazione. Ciò porterà con sé una grande rivoluzione che la smart factory dei prossimi anni e la società in generale non potranno farsi fuggire.
3. CAPITOLO TERZO

APPLICAZIONI NELLA REALTÀ E L’ITALIA NEL 2018

3.1 Premessa

3.2 Boeing nel 1992

Boeing è la più grande azienda aerospaziale del mondo, leader nella produzione di jet di linea commerciali, aerei militari, satelliti, sistemi di difesa e sicurezza, nonché fornitrice di assistenza post-vendita. In qualità di maggiore esportatore manifatturiero in America, la società supporta grandi compagnie aeree e clienti governativi in oltre 150 Paesi. Con uffici aziendali a Chicago, Boeing impiega oltre 140.000 persone negli Stati Uniti e in più di 65 Paesi. Una forza lavoro composta da svariati talenti e l’innovazione come motore trascinante del processo lavorativo.11

L'azienda continua ad espandere e migliorare la propria linea di prodotti e servizi per soddisfare le esigenze dei clienti emergenti. Come già detto, infatti, i clienti sono sempre più alla ricerca di un prodotto migliore e sono molto informati lungo tutto il percorso d’acquisto.

Sono proprio l’innovazione, la soddisfazione del cliente e la ricerca dell’efficienza ed efficacia operativa che hanno portato Boeing a sperimentare l’utilizzo di dispositivi wearable e realtà aumentata.

La compagnia ha introdotto l’utilizzo di dispositivi AR nei propri processi interni già dagli anni Novanta del secolo scorso. Sin da allora, l’azienda ha infatti sperimentato un’applicazione di realtà aumentata (AR), seppur rudimentale, accompagnata al display "head-mounted, see-through" che ha chiamato Navigator 2 (secondo quanto riportato il libro Application Design for Wearable Computing del 2008).

Questa sorta di computer portatile indossabile è stata testata per la fabbricazione e l’assemblaggio, processi complessi in cui l’intervento umano, al tempo, risultava indispensabile. La complessità era dovuta a due cause principali: l’unione di una miriade di piccoli pezzi per creare ogni parte del prodotto finale e l’impossibilità di utilizzare l’automazione in alcuni processi per la poca sensibilità dei robot e i grandi costi di riprogrammazione di questi ultimi.

Il motivo principale dell’utilizzo della AR era la sostituzione di modelli e diagrammi cartacei con semplici informazioni, segni (frecce) e modelli basici proiettati di fronte all’occhio umano in tempo reale, utili ad eseguire i complessi e svariati task (Figura 3.1). Infatti, il numero di informazioni e conoscenze richiesto era sempre crescente e molti di questi dati e istruzioni derivavano da modelli ingegneristici registrati nel sistema CAD (Caudell e Mizell, 1992). La tecnologia avrebbe permesso di inserire i modelli nei dispositivi per poi riprodurla nella realtà.
Figura 3.1 L’applicazione di un HUDset e la proiezione di una scritta e una freccia per segnare la posizione di un buco di trapano dentro la fusoliera di un aeromobile.

Utilizzando questi PC indossabili sarebbe stato possibile vedere le indicazioni degli step successivi e le posizioni dei vari componenti davanti ai propri occhi. Era necessario un solo colore per le proiezioni, cosicché la programmazione del piccolo PC risultava piuttosto semplice. Inoltre, l’utente interagiva con i dati tramite semplici comandi vocali o tocchi del dispositivo per cambiare informazioni quando necessario: una logica innovativa che sembra tutt’altro che studiata quasi trent’anni fa.

3.2.1 I limiti tecnologici degli anni Novanta

Nonostante le idee, le ambizioni e gli aspetti positivi di questa tecnologia, essa era molto limitante in quegli anni. In particolare, costo, batteria, dimensioni, schermo e vincoli di rete dei dispositivi erano gli ostacoli principali che non hanno reso la strategia praticabile. A livello tecnico, i pezzi dell’hardware non erano ben fissati e strutturati in modo da essere allineati e precisi, e le informazioni venivano visualizzate solo sull’occhio destro, portando problemi per chi fosse colpito da ambliopia. Inoltre, sarebbe stato necessario migliorare la precisione della posizione delle informazioni rendendone possibile la visuale muovendo solo gli occhi e non tutta la testa. Un altro
motivo era il bisogno di aumentare il range della visuale dell’utente (simile a quella da un tubo di cartone). Infine, il ritardo che intercorreva tra il movimento della testa e la visualizzazione delle informazioni.

Nonostante tutte queste debolezze, il sistema è stato apprezzato e ha dimostrato il potenziale che avrebbe avuto grazie a successivi sviluppi e miglioramenti (Caudell e Mizell, 1992).

3.3 Boeing nel 2018, un “case-study” di Upskill

Gli sviluppi tecnologici degli ultimi decenni hanno permesso a Boeing e ad altre aziende di poter veramente sfruttare la realtà aumentata, con effetti vantaggiosi evidenti. Boeing negli ultimi anni ha utilizzato i Google Glass nella costruzione degli aerei, in particolare per i cablaggi (Figura 3.2). Cavi e sistemi elettrici sono infatti differenti in ogni modello di aereo, richiedono competenze specifiche e complesse, ed erano solitamente montati o riparati dai tecnici Boeing seguendo una guida di montaggio PDF (Rusciano, 2017).

Figura 3.2 Un tecnico di Boeing identifica il corretto numero del cavo.

[Fonte: Upskill, 2017]
L’utilizzo di laptop risultava abbastanza utile, ma il problema del costante movimento dell’occhio dal piano di lavoro al testo era un’interruzione continua che rendeva molto difficile stare concentrati sul lavoro ed essere veloci.
L’azienda ha potuto testare la tecnologia AR grazie alla partnership con Upskill, società innovativa che costruisce software per dispositivi aziendali di realtà aumentata. Upskill, grazie alla sua piattaforma Skylight, permette l’utilizzo degli occhiali AR ai lavoratori impegnati in compiti complessi, specialmente in impianti di produzione, manutenzione, riparazione e nella distribuzione12.
L'app Skylight funziona consentendo all’utente di eseguire la scansione di un codice QR per caricare le istruzioni di assemblaggio. L'app supporta funzionalità avanzate come il supporto ai comandi vocali, l’aggiornamento in tempo reale dei dati e la possibilità di vedere video “how-to” nel bisogno. Infine, la caratteristica di poter trasmettere in diretta streaming ciò che viene ripreso dalla fotocamera equipaggiata, così da consentire il supporto immediato da remoto in caso di necessità.
Un semplice comando vocale come "local research 1-8-6-A" richiama lo schema corretto passo-passo per ogni singolo filo. Le parole “See what I see” permettono l’avvio dell’assistenza in remoto. Meccanismi molto semplici, quindi, ma dalle grandi potenzialità.

3.3.1 I soddisfacenti risultati e le previsioni future

Partiamo dall’affermazione di Porter all’edizione 2017 del World Business Forum di Milano: “In Boeing un team di apprendisti, grazie all’AR, ha montato una sezione d’ala con 30 componenti in un tempo circa del 34% minore di un altro team del tutto simile equipaggiato con disegni 2D e documentazione tradizionale (Figura 3.3) (Lazzarin, 2018)”. Questo per capire come i miglioramenti e la rivoluzione tecnologica abbiano veramente portato Boeing a riuscire nel proprio obiettivo di migliorare l’efficienza operativa. Un risparmio di tempo di queste dimensioni permette infatti di dedicarsi maggiormente ad altre attività.

12 Informazioni tratte da <https://upskill.io> [Data di accesso: 10/06/2018]
Figura 3.3 Immagine tratta da un video per dimostrare la differenza in velocità senza e con l’utilizzo della AR.

[Fonte: Rusciano, 2017]

Inoltre, con l’aiuto dei Glass, l’azienda è riuscita a portare gli errori a zero. Risultato importantissimo, specialmente ricordando la frase di Ricky Ramirez, tecnico di Boeing: “You can’t pull over if something goes wrong”.

L’azienda parla di un enorme incremento dell’efficienza produttiva, grazie anche alla riduzione dei tempi di montaggio media del 25% (come afferma Upskill nel case-study di Boeing, 2017). Risultati da record che probabilmente porteranno molte altre aziende ad evolversi verso l’industria 4.0 e a sfruttare miglioramenti in produttività, qualità ed ergonomia. A quest’ultimo aspetto si collega il fatto che questa tecnologia porti valore aggiunto alla workforce, amplificandone il potere e la motivazione.

3.4 Fino a che punto è arrivata l'Italia?

L’Italia, sia a livello mondiale\(^{13}\) che europeo\(^{14}\), resta oltre metà classifica nel grado di digitalizzazione. Questo implica che ci saranno ancora molte strade da sperimentare, percorrere ed esplorare. È necessario prendere spunto e motivazione da Paesi come gli Stati Uniti e la Germania, leader nel processo di digitalizzazione, specialmente nel campo delle soluzioni per la realtà aumentata nell’ambiente lavorativo. Questo perché le maggiori aziende sviluppatrici di software AR provengono da questi stati e sono società affermate come Ubimax, Vital Enterprise, Upskill. Ad esse, però, è necessario aggiungere altri nomi: Joinpad, Realmore, Acty e Vision Lab Apps. Si tratta di quattro aziende italiane di recente fondazione che si sono cimentate in questo business innovativo e che giorno dopo giorno sviluppano le proprie soluzioni per conquistare il mercato, avviato in un processo di digitalizzazione.

A questo punto è importante sottolineare come, oltre alle aziende sviluppatrici di software, ci siano alcune aziende e musei italiani che si stanno cimentando nel mondo della AR per trarne i grandi benefici visti precedentemente. In particolare, riporterò due casi molto diversi fra loro, ma che vanno a completare il quadro iniziato con la manifattura in Boeing: la manutenzione di moto da corsa e l’arte. Tre settori, questi, che esprimono l’Italia così com’è conosciuta nel mondo intero.

3.4.1 Aprilia racing

Aprilia Racing porta la Realtà Aumentata nel box MotoGP al Gran Premio di San Marino e della Riviera di Rimini grazie al software di Realmore e all’utilizzo di Daqri Smart Helmet, un casco tecnologicamente avanzatissimo che consente di visualizzare contenuti olografici per aiutare tecnici e meccanici nella preparazione delle moto da gara (Figura 3.4). I tecnici potranno sfruttare la realtà aumentata per vedere le funzionalità del cablaggio semplicemente guardando i singoli connettori. Ciò permetterà di velocizzare l’attività di connessione dei cavi e ridurre a zero il rischio di errore umano. L’introduzione di queste innovative tecnologie permette a tecnici ed ingegneri

del settore di operare in modo da abbattere le usuali tempistiche d’intervento, realizzando quindi un vantaggio che si rivela essenziale nel mondo delle corse motociclistiche. Non a caso, ciascuna moto viene studiata e preparata affinché non sia necessario un elevato numero di soste ai box nel corso della gara: queste, infatti, sono la principale causa di assottigliamento del gap tempistico realizzato dal pilota che precede rispetto agli inseguitori.

Inoltre, i tecnici potranno monitorare i dati correlati alle varie componenti della vettura (temperatura dell’acqua e dell’olio o dei pneumatici) grazie alla termocamera installata nel dispositivo wearable. Il vantaggio principale sarà quello di avere la facoltà di fare una checklist sull’usura delle parti della moto e valutare al meglio i tempi di sostituzione. Anche in questo caso, infine, possiamo parlare di assistenza in remoto nei casi di estrema necessità, condividendo informazioni strategiche15. Risulta quindi evidente che poter disporre di strumenti in grado di migliorare le tempistiche d’intervento e, d’altro canto, di ridurre drasticamente il rischio di ipotetici errori dell’uomo, può generare in capo ad Aprilia Racing – quale scuderia utilizzatrice – un innovativo vantaggio competitivo nel settore delle corse motociclistiche.

Figura 3.4 Visuale moto e indicazioni dall’helmet.

[Fonte: Piaggio Group, 2017]
3.4.2 AR a museo

Un caso interessante questo, che si distacca da quello che è l’ambito legato a “manufactoring” e “maintenance”. Si tratta della realtà aumentata come tecnologia per offrire nuovi modi di coinvolgimento per i visitatori di mostre, eventi e musei in Italia. Tra questi ricordiamo alcuni esempi di successo, tra cui il Museo di Santa Giulia di Brescia e la Villa Reale di Monza. Qui gli Smart Glass sono stati utilizzati dai visitatori per muoversi liberamente negli ambienti e passeggiare tra le aree archeologiche vivendo un’esperienza unica ed immersiva, caratterizzata da un mondo reale arricchito da informazioni riguardo a luoghi, vicende storiche e personaggi (Figura 3.5).

Figura 3.5 La realtà aumentata a museo.

[Fonte: Epson, 2017]

Le capacità comunicative di tali dispositivi permetterebbero loro di sostituirsi efficacemente a guide ed interpreti, potendo trasmettere ad interessati visitatori informazioni in merito ad opere, sculture, manoscritti e reperti esposti. Il tutto semplicemente puntando verso gli stessi lo sguardo, disponendo nell’immediato della traduzione in un elevato numero di lingue e alfabeti, suggerendo un percorso da seguire all’interno dei vari luoghi, richiamando stili o associazioni ad altri artisti o influenze che renderebbero più interessante e completa la visita stessa. Un punto di partenza per la promozione del patrimonio artistico e culturale di cui il nostro Paese dispone in abbondanza, tematica a lungo conlamentata da svariate forze politiche negli ultimi anni, potrebbe essere proprio questo nuovo concetto di approccio all’arte e alle sue sfaccettature.

Grazie alla realtà aumentata, inoltre, i visitatori di musei e mostre non dovranno più ricorrere all’immaginazione per capire come camminasse un dinosauro o che aspetto avesse in origine una statua o un edificio di 2000 anni: basta indossare gli smart glass e tutto questo prende vita davanti agli occhi, sovrapposto automaticamente a opere e siti archeologici16.

3.5 Un mercato in esplosione

Dopo aver portato un caso studio internazionale e parlato dell’Italia come stato sempre più diretto alla digitalizzazione, è opportuno portare qualche dato a testimonianza.

Il mercato tecnologico italiano è un mondo vasto e in continua evoluzione, che ha ancora tanto da imparare. L’IoT in tutte le sue sfaccettature sarà il massimo protagonista dei prossimi anni, con una crescita prevista da 32 a 97 milioni di euro dal 2014 al 2020 (Grafico 3.1).

Grafico 3.1 Il mercato IoT in Italia.

Come riportato nel report di Assintel del 2018, per il 39% delle aziende italiane la trasformazione digitale si identifica con la capacità di ripensare il modello di business dell’organizzazione. Una missione strategica che si alimenta attraverso la capacità di avere una chiara visione del futuro, obiettivi precisi e la confidenza di appartenere ad un ecosistema che si muove in modo sinergico. L’implementazione, tuttavia, non sarà semplice per un’economia tradizionalista come quella italiana. Bisogna però tenere in considerazione che la trasformazione digitale dell’industria non va considerata solo come una “visione”, bensì una realtà concreta e già esistente da cui è necessario riuscire a coglierne tutti i benefici. Dalla Tabella 3.1, infatti, è possibile notare come tutte le tecnologie emergenti stiano prendendo piede, con crescite esponenziali anno dopo anno.

[Fonte: Statista, 2018]
Tabella 3.1 Il mercato delle tecnologie emergenti in Italia dal 2016 al 2018

<table>
<thead>
<tr>
<th>Tecnologie emergenti (Milioni di €)</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>17/16</th>
<th>18/17</th>
</tr>
</thead>
<tbody>
<tr>
<td>IoT (Internet of Things)</td>
<td>12.133</td>
<td>14.127</td>
<td>16.259</td>
<td>16,4%</td>
<td>15,1%</td>
</tr>
<tr>
<td>Connettività</td>
<td>1.280</td>
<td>1.509</td>
<td>1.757</td>
<td>17,9%</td>
<td>16,5%</td>
</tr>
<tr>
<td>Hardware</td>
<td>4.372</td>
<td>5.050</td>
<td>5.772</td>
<td>15,5%</td>
<td>14,3%</td>
</tr>
<tr>
<td>Software</td>
<td>3.612</td>
<td>4.208</td>
<td>4.845</td>
<td>16,5%</td>
<td>15,1%</td>
</tr>
<tr>
<td>Servizi</td>
<td>2.869</td>
<td>3.360</td>
<td>3.885</td>
<td>17,1%</td>
<td>15,6%</td>
</tr>
<tr>
<td>Cognitive</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td>20,5%</td>
<td>25,6%</td>
</tr>
<tr>
<td>AR/VR (Augmented Reality/Virtual Reality)</td>
<td>6</td>
<td>25</td>
<td>47</td>
<td>335,6%</td>
<td>86,4%</td>
</tr>
<tr>
<td>Wearable (smartwatch, ecc.)</td>
<td>4</td>
<td>10</td>
<td>19</td>
<td>155,7%</td>
<td>84,8%</td>
</tr>
</tbody>
</table>

Fonte: Elaborazioni IDC per Assintel Report 2018

Grafico 3.2 Il mercato AR/VR in Italia.

[Fonte: Elaborazioni IDC per Assintel, Report 2018, pg 26]

In particolare, i mercati dei Wearable devices e dei visori AR/VR sono ancora ad uno stadio di maturità precoce, ma dopo aver vissuto una crescita di oltre il 330% tra il
2016/2017, nel corso del 2018 vedranno un ulteriore crescita, superiore all’80% (Grafico 3.2). Ciò sarà possibile grazie alla progressiva affermazione di nuovi casi d’uso nelle aziende italiane, specialmente per quanto riguarda la formazione, la progettazione e la sicurezza dei lavoratori sul campo. Nel breve termine, i visori di realtà virtuale si diffonderanno più velocemente di quelli per la realtà aumentata, che vedranno però crescite più rilevanti in un orizzonte più lungo, man mano che le semplici DEMO di prototipi diventeranno veri e propri casi d’uso.

A fomentare il tutto in modo positivo, lo Stato italiano, che nel settembre 2016 ha approvato il Piano nazionale “Impresa 4.0”. Esso è l’occasione per tutte le aziende che vogliono cogliere le opportunità legate alla quarta rivoluzione industriale, grazie ad un mix di incentivi fiscali, sostegno al venture capital, diffusione della banda ultralarga, formazione dalle scuole alle università, con lo scopo ultimo di favorire e incentivare le imprese ad adeguarsi ed aderire pienamente alla quarta rivoluzione industriale17. Già nel 2017 i risultati sono stati evidenti. In particolare, come riportato nel Piano nazionale Impresa 4.0 del Ministero dell’Economia e delle Finanze (2017), è necessario sottolineare l’incremento delle spese in ricerca, sviluppo e innovazione per la gran parte delle aziende osservate (Grafico 3.3).

Grafico 3.3 Il mercato AR/VR in Italia.

[Fonte: Indagine Unioncamere-Infocamere, 2017, su campione di 68.000 imprese]

17 Informazioni disponibili su <http://www.sviluppoeconomico.gov.it/index.php/it/industria40Z>
[Data di accesso: 10/06/2018]
3.6 Conclusioni

“It was clear, across the board, that it was going to work.” Questa l’affermazione del responsabile R&S di Boeing Jason DeStories. Infatti, una tecnologia come quella presa in esame nel capitolo non può che portare ad ottenere enormi vantaggi all’interno di un’azienda, sia essa operante nel settore aerospaziale, automotive, manifatturiero o in un museo.

Da una parte, la scelta di Aprilia Racing si è fin da subito rivelata vincente e di larghe vedute e l'entusiastica accoglienza da parte di tecnici e meccanici del Team ne è la prova più evidente. Dall’altra, la realtà aumentata è in grado di creare un'esperienza unica e rendere la cultura più accessibile e coinvolgente, pur mantenendo il focus sull'elemento principale, la mostra o il luogo visitato.

In questi ultimi due casi è stato possibile notare come i campi di applicazione di queste tecnologie non si limitino alla sola manifattura, ma il loro utilizzo possa miscelarsi ai più diversi aspetti della vita degli individui, agevolando e permettendo il costante progresso con i loro benefici intrinsechi.

I progressi da fare sono ancora molti, specialmente in Italia. Ma, anche grazie al Piano “Impresa 4.0”, una cosa è certa: in un futuro non lontano, le aziende e istituzioni che ne inizieranno a fare tesoro saranno molte.
CONCLUSIONI

Per concludere l’elaborato, saranno eseguite delle considerazioni riguardo alla scalabilità dei software di realtà aumentata e ad eventuali sviluppi. Un approfondimento a riguardo permette infatti di portare la visuale al futuro, corredandola di ipotesi personali.

Innanzitutto, perché parlare di scalabilità del prodotto?

Da un lato le piattaforme software per la realtà aumentata sono configurabili ed estensibili, permettendo di implementare diversi nuovi casi di utilizzo man mano che la rivoluzione procede. Inoltre, i progetti possono espandersi, arricchirsi di sempre maggiori dettagli, talvolta mantenendo le stesse risorse IT.

Dall’altro, prevedono investimenti hardware a prova di futuro: piattaforme del genere porteranno infatti anche le case produttrici di questi ultimi ad adoperarsi per stare al passo con le richieste esigenti del mercato. Sempre più dispositivi, sia mobili che indossabili, saranno abbinati a questa tecnologia per portare valore al cliente. Già ci sono molti casi di aziende che abbinano realtà aumentata e smartphone. Celebre è in questo senso IKEA, ideatore di un’app che si avvale dell’AR per fornire a potenziali clienti un’anteprima dell’arredo inquadrando la stanza dal proprio dispositivo mobile. Sempre di più, però, saranno i casi di utilizzo e le sperimentazioni che verranno fatte.

Sorge quindi spontanea una domanda: “Verso dove ci stiamo dirigendo?”. Lo stage, come già anticipato, mi ha messo in contatto con queste realtà altamente innovative ed in costante evoluzione. Le tipologie di business influenzabili da tali tecnologie sono numerose. Di conseguenza, agli albori di una rivoluzione così importante, non è semplice definire a priori un punto di arrivo.

Un interessante e curioso esempio personalmente affrontato in ambito lavorativo è stato presentato da un noto produttore diautomobili, intenzionato ad integrare alla vendita del mezzo di trasporto tradizionale gli Smart Glasses: in tal modo, il conducente avrà la
possibilità di visionare le informazioni di bordo e le indicazioni di navigazione di fronte ai propri occhi, senza la necessità di spostare lo sguardo dalla strada. Trattasi di una richiesta inusuale ma assolutamente innovativa, emblema che in molti settori i progressi sono sempre più voluti ed evidenti.

D’altro canto, ancora troppi manager non stanno progettando alcun rinnovamento tecnologico a livello aziendale, ma quasi altrettanti se lo sono prefissato come progetto, secondo Statista (2018). Solo una minor percentuale ha già implementato uno o più progetti nell’Internet of Things, ricavandone grande vantaggio.

Per concludere, l’unione tra le informazioni e i dati derivanti dalla stesura della relazione e la mia personale esperienza lavorativa, mettono in luce il futuro promettente della tecnologia. Ciò, ovviamente, non riguarda esclusivamente l’utilizzo della realtà aumentata, bensì l’innovazione in generale, pronta ad attaccare ogni minimo aspetto della nostra vita, sia personale che lavorativa.
CITAZIONE DI LIBRI

CITAZIONE DI ARTICOLI
[Data di accesso: 05/05/2018]

[Data di accesso: 05/05/2018]

[Data di accesso: 05/05/2018]

[Data di accesso: 05/05/2018]

[Data di accesso: 03/04/2018]

GARBELLANO, R., 2016, *Che cosa sono davvero smart factory e Industria 4.0*. Disponibile su: <https://www.industriaitaliana.it/cosa-davvero-la-smart-factory/>
[Data di accesso: 05/05/2018]

[Data di accesso: 25/05/2018]

KAGERMANN, H., HELBIG, J., HELLINGER, A., WAHLSTER, W., 2013. *Recommendations for implementing the strategic initiative industrie 4.0: Securing*
the future of German manufacturing industry. Final report of the industrie 4.0 working group.

MASONI, R. et al., 2017. Supporting remote maintenance in industry 4.0 through augmented reality. Disponibile su: <https://www.sciencedirect.com> [Data di accesso: 20/05/2018]

MOURTZIS, D., VLACHOU, E., MILAS, N., XANTHOPOULOS, N., 2015, A cloud-based approach for maintenance of machine tools and equipment based on shop-floor monitoring, Procedia CIRP; pp. 655-660

content/uploads/sites/53/2014/12/dec-14-wearables.pdf> [Data di accesso: 20/04/2018]

ZUFFADA, R., 2017. Il dualismo tra it e ot nell’industria manifatturiera 4.0. Disponibile su: <zhits://ricomincioda4.fondirigenti.it/dualismo-it-ot-nellindustria-manifatturiera-4-0/> [Data di accesso: 05/05/2018]

REPORT, RICERCHE, PAPER SCARICABILI DA INTERNET

GSM Association, 2017. The 5G era: Age of boundless connectivity and intelligent automation. Disponibile su: <https://www.gsmainelligence.com/research/?file=0efdd9e7b6eb1c4ad9aa5d4c0c971e62&download> [Data di accesso: 05/05/2018]

HARVARD BUSINESS REVIEW, 2017. Augmented Reality Is Already Improving Worker Performance. Disponibile su: <HBR.ORG> [Data di accesso: 02/05/2018]

CONCLUSIONI

ROLAND BERGER, 2016. Industria 4.0, la nuova frontiera della competitività industriale.
Disponibile su: <http://realtime.spsitalia.it/allegati/industria4.0lanuovafrontieradellacompetitivitàindustrialeinitalia.pdf> [Data di accesso: 02/05/2018]

STATISTA, 2018. Wearable devices

Webgrafia

https://www.ai4business.it/ (È il primo sito editoriale in Italia dedicato all'intelligenza artificiale e alle sue applicazioni nel business e nella vita di tutti i giorni)

http://www.boeing.com (Boeing è la più grande costruttrice statunitense di aeromobili e la più grande azienda nel settore aeroespaziale)

https://www.cisco.com (Cisco Systems Inc., nota semplicemente come Cisco, è una azienda multinazionale specializzata nella fornitura di apparati di networking)

https://www.digital4trade.it (Sito in cui trovare reportage e dati di mercato relativi al mondo del Trade e dei Rivenditori)

https://www.economyup.it (EconomyUp è la testata di riferimento in Italia per tematiche riguardanti il mondo delle Startup, dell'Economia digitale e dell'Innovazione)
SMART FACTORY E REALTÀ AUMENTATA: IL FUTURO NELLE MANI DELLA TECNOLOGIA

https://www.epson.it (Epson è una compagnia giapponese operante nell'elettronica di consumo, e produttrice in particolare di stampanti, scanner d'immagine, orologi, personal computer, ecc.)

http://europa.eu (EUROPA è il sito web ufficiale dell'UE che fornisce l'accesso alle informazioni pubblicate da tutte le istituzioni, agenzie e organismi dell'UE)

https://www.idc.com (IDC è la prima società mondiale di ricerche di mercato, consulenza ed eventi in ambito IT e innovazione digitale)

http://www.ilsole24ore.com (Giornale italiano con notizie di economia, cronaca italiana ed estera, quotazioni borsa in tempo reale e di finanza, norme e tributi, fondi e obbligazioni, mutui, prestiti e lavoro)

https://www.imd.org (Sito dell’International Institute for Management Development, scuola di management considerata una delle più importanti business school del mondo)

https://www.industriaitaliana.it (Analisi e news su economia reale, innovazioni, digital transformation)

https://www.internet4things.it/ (sito di riferimento per il mercato dell'IoT, con news, soluzioni e ricerche su smart innovation e tematiche IoT)

http://www.piaggiogroup.com (Sito ufficiale del più grande costruttore europeo di veicoli motorizzati a due ruote)

https://proceedix.com (Azienda che si occupa di sviluppo di piattaforme per la realtà aumentata nell’ambiente lavorativo)

https://www.rolandberger.com/en/?country=IT (Roland Berger GmbH è una società tedesca di consulenza strategica e aziendale)

http://www.sviluppoeconomico.gov.it/index.php/it/ (Sito del Ministero dello Sviluppo Economico)

https://tecnologia.libero.it (Notizie, foto, video dal mondo digitale: social, App, sicurezza informatica, smartphone, wearable, IoT, robot, droni, prodotti hi-tech. Recensioni e tutoria)

http://www.ubimax.com/en/ (Software house e sviluppo di piattaforme software per realtà aumentata)
http://www.ucimu.it/home/ (UCIMU-SISTEMI PER PRODURRE è l'associazione dei costruttori italiani di macchine utensili, robot, automazione e di prodotti a questi ausiliari)

https://upskill.io (Software house e sviluppo di piattaforme software per realtà aumentata)

http://www.visionlabapps.com/ (Software house e sviluppo di piattaforme software per realtà aumentata)