Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Cozzolino, Claudia (2018) Low rank preconditioner updates for sequences of linear systems arising from an optimal transport problem. [Laurea triennale]

Per questo documento il full-text online non disponibile.

Abstract

In this work a class of tuned preconditioners is described in order to accelerate the Preconditioned Conjugate Gradient method applied to a sequence of linear systems, with symmetric positive definite coefficient matrices, arising from an Optimal Transport Problem. In particular low rank corrections for the Incomplete Cholesky initial preconditioners are experimented seeking out the efficient numerical solution. At this purpose, preconditioners of the Freitag-Spence class have been constructed and compared using different definitions for the corrective low rank matrix V, as the collection of solutions or the set of approximate eigenvectors arising from the Rayleigh-Ritz procedure. Numerical results of the proposed strategy are presented, preceeded by a preliminary study to identify the optimal parameters to work with. The numerical results show the effectiveness of this technique on the systems condition number and on reducing PCG iterations and overall CPU times.

Item Type:Laurea triennale
Corsi di Laurea Triennale:pre 2012- Facoltà di Scienze MM. FF. NN. > Matematica
Subjects:Area 01 - Scienze matematiche e informatiche > MAT/08 Analisi numerica
Codice ID:61592
Relatore:Martínez Calomardo, Ángeles
Data della tesi:14 December 2018
Biblioteca:Polo di Scienze > Biblioteca di Matematica

Solo per lo Staff dell Archivio: Modifica questo record