Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Puliero, Silvia (2018) A study on the contribution of satellite RADAR interferometry to analyse the activity of Aso volcano (Japan). [Magistrali biennali]

Full text disponibile come:

PDF (Tesi Magistrale)


The aim of this work is to compare the use of SAR datasets acquired by different sensors and understand which one has the best performance estimating from small to large ground displacements in volcanic area, maintaining a good spatial information. Through the reconstruction of the deformations evolution, it is possible to analyse the behaviour of the volcanic edifice before, during and after eruptions. The study is focused on Aso volcano, in the central part of the Kyushu island (Japan), which stands out for its wide caldera (18 km x 25 km). Inside the rim is included the post-caldera central cones younger than 0.1 Ma. Among 17 cones, the only crater which has been active for 80 years is Nakadake, composed by seven craterlets. In the considered time span (2007-2018), no large eruptions occurred; during its unrest period, a prevalent subsidence has persisted simultaneously with the degassing activity. Although the low intensity activity, ground displacements, detectable through remote sensing techniques, can reflect the inflate-deflate cycles of the magma chamber, situated below one of the main inactive crater (Kusasenri) at a depth of 4-5 km. Using Small Baseline Subset (SBAS) InSAR technique, ALOS Palsar-1 from 2007 to 2011, Sentinel-1 from 2014 to 2018 and ALOS Palsar-2 from 2016 to 2018 SAR datasets have been calibrated through Global Navigation Satellite System (GNSS) measurements. With the employment of SARscape software, for each time span, velocity and displacements maps have been generated to obtain deformations time series to analyse and identify the motion due to volcanic activity. An important seismic event occurred during the investigated time period is the Mw 7.0 Kumamoto earthquake happened on April 16, 2016, 60 km far from the caldera rim. Both in SAR and GPS time series was important to exclude the coseismic effect to estimate the correct trend movement due to the volcano activity. In the displacement time series, three points in correspondence of GPS located within the caldera and few points in the post-caldera central cones have been examined for each time span. Analysing the displacements time series is necessary considered that deformations are affected by many factors as geodynamic, atmospheric effects, noise, type of images processing and earthquakes further the volcanic activity and the characteristics of the sensor used for the acquisitions. The final results show that only in case of short satellite revisiting time and lesser wavelength is possible to detect low intensity activities, but sometimes using SAR data with longer revisiting time and higher wavelength helps to obtain a better spatial information in vegetated area, as in the case of Aso caldera.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:Interferometry, Aso Volcano, Japan, Interferometria, Vulcano Aso, Giappone
Codice ID:61698
Relatore:Floris, Mario
Correlatore:Marzoli, Andrea and Tessari, Giulia
Data della tesi:07 December 2018
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Abe, Y., Ohkura, T., Shibutani, T., Hirahara, K., Kato, M. (2010) ‘Crustal structure beneath Aso Caldera, Southwest Japan, as derived from receiver function analysis’, Journal of Volcanology and Geothermal Research. Elsevier B.V., 195(1), pp. 1–12. doi: 10.1016/j.jvolgeores.2010.05.011. Cerca con Google

Aizawa, K., Asaue, H., Koike, K., Takakura, S., Utsugi, M., Inoue, H., Yoshimura, R. et al. (2017) ‘Seismicity controlled by resistivity structure: The 2016 Kumamoto earthquakes, Kyushu Island, Japan’, Earth, Planets and Space. Springer Berlin Heidelberg, 69(1), pp. 2–11. doi: 10.1186/s40623-016-0590-2. Cerca con Google

Anderson, R. (1908) ‘The Japanese Volcano Aso and its Large Caldera’, The Journal of Geology, 16(6), pp. 499–526. Cerca con Google

Asaue, H., Koike, K. and Yoshinaga, H., Shinichi, T. (2006) ‘Magnetotelluric resistivity modeling for 3D characterization of geothermal reservoirs in the Western side of Mt. Aso, SW Japan’, Journal of Applied Geophysics, 58, pp. 296–312. Cerca con Google

Ayele, A., Jacques, E., Kassim, M., Kidane, T., Omar, A., Tait, S., Nercessian, A., de Chabalier, J.B., King, G. (2007) ‘The volcano-seismic crisis in Afar, Ethiopia, starting September 2005.’, Earth Planet. Sci. Lett., 255, pp. 177–187. doi: Vai! Cerca con Google

Baize, S. (2016) ‘M7.2 Kumamoto Earthquake 14 and 15 April 2016 - A compilation of data and results with focus on surface rupture’, Surface, Inqua Project, (April), pp. 1–86. Cerca con Google

Bamler, R. and Just, D. (1993) ‘Phase statistics and decorrelation in SAR interferograms’, in Geoscience and Remote Sensing Symposium, 1993, IGARSS93 Better Understanding of Earth Environment, pp. 980–984. Cerca con Google

Bamler, R. (2000) ‘Principles Of Synthetic Aperture Radar’, Surveys in Geophysics, 21. Cerca con Google

Beccaro, L. (2018) Monitoraggio del vulcano attivo Sakurajima (Giappone) con dati SAR satellitari: dalla misura degli spostamenti alla modellazione e previsione dell’evoluzione. Università degli Studi di Padova. Cerca con Google

Berardino P., Casu G., Fornaro R., Lanari R., Manunta M., Manzo M., Sansosti E. (2004) ‘A quantitative analysis of the SBAS algorithm performance.’, in International Geoscience and Remote Sensing Symposium, Anchorage. Alaska, pp. 3321–3324. Cerca con Google

Berardino P., Fornaro G., Lanari R., S. E. (2002) ‘A new algorithm for surface deformation monitoring based on small baseline differential interferograms.’, IEEE Transactions on Geoscience and Remote Sensing, 40(11), pp. 2375–2383. Cerca con Google

Biggs, J., Anthony, E.Y., Ebinger, C. J. (2009) ‘Multiple inflation and deflation events at Kenyan volcanoes, East Afrinca Rift.’, Geology, 37, pp. 979–982. doi: Vai! Cerca con Google

Biggs, J. and Pritchard, M. E. (2017) ‘Global volcano monitoring: What does it mean when volcanoes deform?’, Elements, 13(1), pp. 17–22. doi: 10.2113/gselements.13.1.17. Cerca con Google

Blanpied, M. L., Lockner, D. A. and Byerlee, J. D. (1995) ‘Frictional slip of granite at hydrothermal conditions’, Journal of Geophysical Research: Solid Earth, 100(B7), pp. 13045–13064. doi: 10.1029/95JB00862. Cerca con Google

Cigolini, C., Coppola, D. and Yokoo, A., Laiolo, M. (2018) ‘The thermal signature of Aso Volcano during unrest episodes detected from space and ground-based measurements’, Earth, Planets and Space. Springer Berlin Heidelberg, 70(1). doi: 10.1186/s40623-018-0831-7. Cerca con Google

Dzurisin, D. (2007) Volcanic deformation. Geodetic monitoring techniques., Springer. Chichester, UK: Praxis Publishing. Cerca con Google

Ferretti, A., Prati, C. and Rocca, F. (2001) ‘Permanent Scatters in SAR Interferometry.’, IEEE Transactions on Geoscience and Remote Sensing, 39(1), pp. 8–20. Cerca con Google

Ferretti A., Monti-Guarnieri A., Prati C., Rocca F., M. D. (2007) InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, ESA-TM 19, ESA Publication. Edited by K. Fletcher. The Netherlands. Cerca con Google

Fiaschi, S., Closson, D., Abou Karaki, N., Pasquali, P., Riccardi, P., Floris, M. (2017) ‘The complex karst dynamics of the Lisan Peninsula revealed by 25 years of DInSAR observations. Dead Sea, Jordan.’, ISPRS Journal of Photogrammetry and Remote Sensing, 130, pp. 358–369. doi: Vai! Cerca con Google

Fisher, R.V. and Schmincke, H. U. (1984) Pyroclastic Rocks. Springer-Verlag, Berlin Heidelberg. Cerca con Google

Fitch, T. J. (1972) ‘Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and western Pacific’, Lamont-Doherty Geological Observatory Contribution, (0000). Cerca con Google

Fujiwara, S., Yarai, H., Kobayashi, T., Morishita, Y., Nakano, T., Miyahara, B., Nakai, H., Miura, Y., Ueshiba, H., Kakiage, Y., Une, H. (2016) ‘Small-displacement linear surface ruptures of the 2016 Kumamoto earthquake sequence detected by ALOS-2 SAR interferometry’, Earth, Planets and Space. Springer Berlin Heidelberg, 68(1), p. 160. doi: 10.1186/s40623-016-0534-x. Cerca con Google

Gomarasca, M. A. (2009) Basics of geomatics, Basics of Geomatics. Springer Dordrecht Heidelberg. Cerca con Google

Hao, J., Ji, C. and Yao, Z. (2017) ‘Slip history of the 2016 Mw7.0 Kumamoto earthquake: Intraplate rupture in complex tectonic environment’, Geophysical Research Letters, 44(2), pp. 743–750. doi: 10.1002/2016GL071543. Cerca con Google

Hooper, A., Zebker, H., Segall, P. and Kampes, B. (2004) ‘A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers.’, Geophysical Research Letters, 31(23). Cerca con Google

Huang, Y.-C. et al. (2018) ‘Shallow volcanic reservoirs and pathways beneath Aso caldera revealed using ambient seismic noise tomography’, Earth, Planets and Space. Springer Berlin Heidelberg, 70(1), p. 169. doi: 10.1186/s40623-018-0941-2. Cerca con Google

Ichikawa, K. (1980) ‘Geohistory of the Median Tectonic Line of Southwest Japan.’, Memoir Geol. Soc. Japan, 18, pp. 187–212. Cerca con Google

Iisaka, J. (1998) Synthetic aperture RADAR image handbook. Tokyo: Asakura. Cerca con Google

Ishibashi, K. (1986) ‘Transformation of Northeast Japan to North American plate versus eastward movement of Southwest Japan’, Monthly Chikyu, 8, pp. 103–144. Cerca con Google

Kagami, H. (1989) ‘Origin of Nankai fore-arc sliver and uplifting of coastal mountains in southwest Japan’, Report of the Institute of the Kuroshio Sphere, Kochi University., 4, pp. 21–35. Cerca con Google

Kamata, H. (1989) ‘Volcanic and structural history of the Hohi volcanic zone, central Kyushu, Japan’, Bulletin of Volcanology, 51(5), pp. 315–332. doi: 10.1007/BF01056894. Cerca con Google

Kamata, H. (1998) ‘Quaternary volcanic front at the junction of the south-west Japan Arc and the Ryukyu Arc’, Journal of Asian Earth Sciences, 16(1), pp. 67–75. doi: 10.1016/S0743-9547(97)00044-5. Cerca con Google

Kamata, H. and Kodama, K. (1999) ‘Volcanic history and tectonics of the Southwest Japan Arc’, Island Arc, 8(3), pp. 393–403. doi: 10.1046/j.1440-1738.1999.00241.x. Cerca con Google

Kaneko, K., Inoue, K., Koyaguchi, T., Yoshikawa, M., Shibata, T., Takahashi, T., Furukawa, K. (2015) ‘Magma plumbing system of the Aso-3 large pyroclastic eruption cycle at Aso volcano, Southwest Japan: Petrological constraint on the formation of a compositionally stratified magma chamber’, Journal of Volcanology and Geothermal Research, pp. 41–58. doi: 10.1016/j.jvolgeores.2015.07.016. Cerca con Google

Kaneko, K. et al. (2007) ‘Repeated large-scale eruptions from a single compositionally stratified magma chamber: An example from Aso volcano, Southwest Japan’, Journal of Volcanology and Geothermal Research, 167(1–4), pp. 160–180. doi: 10.1016/j.jvolgeores.2007.05.002. Cerca con Google

Kato, A., Nakamura, K. and Hiyama, Y. (2016) ‘The 2016 Kumamoto earthquake sequence’, Proceedings of the Japan Academy, Series B, 92(8), pp. 358–371. doi: 10.2183/pjab.92.359. Cerca con Google

Kawamoto, S., Hiyama, Y., Kai, R., Suga, F., Yamaguchi, K., Furuya, T., Abe, S., Takamatsu, N. (2016) ‘Crustal Deformation Caused by the 2016 Kumamoto Earthquake Revealed by GEONET’, Bulletin of the Geospatial Information Authority of Japan, 64, pp. 27–33. Cerca con Google

Kobayashi, T., Morishita, Y., Munekane, H. (2018) ‘First detection of precursory ground inflation of a small phreatic eruption by InSAR.’, Earth and Planet. Sci. Lett., 491, pp. 244–254. doi: Vai! Cerca con Google

Kodama, K., Tashiro, H. and Takeuchi, T. (1995) ‘Quaternary counterclockwise rotation of south Kyushu, southwest Japan’, Geology, 23(9), pp. 823–826. doi: 10.1130/0091-7613(1995)023<0823:QCROSK>2.3.CO;2. Cerca con Google

Kumahara Y, Goto H, Nakata T, Ishiguro S, Ishimura D, Ishiyama T, Okada S, Kagohara K, Kashihara S, Kaneda H, Sugito N, Suzuki Y, Takenami T, Tanaka K, Tanaka T, Tsutsumi H, Cerca con Google

Toda S, Hirouchi D, Matsuta N, Mita T, Moriki H, Yoshida H, W. M. (2016) ‘Distribution of surface rupture associated the 2016 Kumamoto earthquake and its significance.’, in Abstract (MIS34-05) of the Japan Geoscience Union Meeting 2016. Cerca con Google

Kusumoto, S. (2016) ‘Dip distribution of Oita – Kumamoto Tectonic Line located in central Kyushu, Japan, estimated by eigenvectors of gravity gradient tensor’, Earth, Planets and Space. Springer Berlin Heidelberg, 68(153). doi: 10.1186/s40623-016-0529-7. Cerca con Google

Lin, A., Satsukawa, T., Wang, M., Mohammadi Asl, Z., Fueta, R., Nakajima, F. (2016) ‘Coseismic rupturing stopped by Aso volcano during the 2016 Mw 7.1 Kumamoto earthquake, Japan’, Science, 354(6314). Cerca con Google

Loveless, J. P. and Meade, B. J. (2010) ‘Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan’, Journal of Geophysical Research, 115(B2), p. B02410. doi: 10.1029/2008JB006248. Cerca con Google

Luzi, G. (2010) Ground based SAR interferometry: a novel tool for Geoscience and Remote Sensing New Achievement. Edited by D. Riccio and P. Imperatore. Cerca con Google

Mahony, S. H., Wallace, L. M., Miyoshi, M., Villamor, P., Sparks, R. S. J., Hasenaka, T. and Science, G. N. S., Drive, F., Hutt, L. (2011) ‘Volcano-tectonic interactions during rapid plate-boundary evolution in the Kyushu region, SW Japan’, Geological Society of America Bulletin, 123(11), pp. 2201–2223. doi: 10.1130/B30408.1. Cerca con Google

Matsubara, Y. and Seno, T. (1980) ‘Paleogeographic reconstruction of the Philippine Sea at 5 m.y.B.P.’, Earth and Planetary Science Letters, 51, pp. 406–414. Cerca con Google

Matsumoto, N., Yoshihiro, H. and Sawada, A. (2016) ‘Continuity, segmentation and faulting type of active fault zones of the 2016 Kumamoto earthquake inferred from analyses of a gravity gradient tensor’, Earth, Planets and Space. Springer Berlin Heidelberg, 68(1). doi: 10.1186/s40623-016-0541-y. Cerca con Google

Merryman Boncori, J.P., Papoutsis, I.; Pezzo, G., Atzori, S., Ganas, A., Karastathis, V., Salvi, S., Kontoes, C., Antonioli, A. (2015) ‘The February 2014 Cephalonia earthquake (Greece): 3D deformation field and source modeling from multiple SAR techniques.’, Seismol. Res. Lett., 86, pp. 1–14. doi: Vai! Cerca con Google

Miyabuchi, Y., Ikebe, S. ichiro and Watanabe, K. (2008) ‘Geological constraints on the 2003-2005 ash emissions from the Nakadake crater lake, Aso Volcano, Japan’, Journal of Volcanology and Geothermal Research. Elsevier B.V., 178(2), pp. 169–183. doi: 10.1016/j.jvolgeores.2008.06.025. Cerca con Google

Miyabuchi, Y. and Terada, A. (2009) ‘Subaqueous geothermal activity revealed by lacustrine sediments of the acidic Nakadake crater lake, Aso Volcano, Japan’, Journal of Volcanology and Geothermal Research. Elsevier B.V., 187(1–2), pp. 140–145. doi: 10.1016/j.jvolgeores.2009.08.001. Cerca con Google

Moro, M., Chini, M., Saroli, M., Atzori, S., Stramondo, S., Salvi, S. (2011) ‘Analysis of large, seismically induced, gravitational deformations imaged by high-resolution COSMO-SkyMed synthetic aperture RADAR.’, Geology, 39, pp. 527–530. doi: . Vai! Cerca con Google

Nakada, S. and Kamata, H. (1991) ‘Temporal change in chemistry of magma source under Central Kyushu, Southwest Japan: progressive contamination of mantle wedge.’, Bulletin of Volcanology, 53(3), pp. 182–194. Cerca con Google

Nakata, K. and Imaizumi, T. (2002) ‘Digital active fault map of Japan’. Tokyo: University of Tokyo Press, p. 60. Cerca con Google

National Institute of Advanced Industrial Science and Technology (2007) Investigations on the activity and tectonic history of the Futagawa- Hinagu fault zone, Report of Results on “Basic Investigations of Additional Fault Zone,” no. H18-7. Cerca con Google

Nishimura, S. and Hashimoto, M. (2006) ‘A model with rigid rotations and slip deficits for the GPS-derived velocity field in Southwest Japan’, Tectonophysics, 421(3–4), pp. 187–207. doi: 10.1016/j.tecto.2006.04.017. Cerca con Google

Nobile, A., Acocella, V., Ruch, J., Aoki, Y., Borgstrom, S., Siniscalchi, V., Geshi, N. (2017) ‘Steady subsidence of a repeatedly erupting caldera through InSAR observations: Aso, Japan’, Bulletin of Volcanology, 79(5). doi: 10.1007/s00445-017-1112-1. Cerca con Google

Ohsawa, S., Saito, T., Yoshikawa, S., Mawatari, H., Yamada, M., Amita, K., Takamatsu, N. Sudo, Y., Kagiyama, T. (2010) ‘Color change of lake water at the active crater lake of Aso volcano, Yudamari, Japan: Is it in response to change in water quality induced by volcanic activity?’, Limnology, 11(3), pp. 207–215. doi: 10.1007/s10201-009-0304-6. Cerca con Google

Okada, A. (1980) ‘Quaternary faulting along the Median Tectonic Line of southwest Japan’, Mem. Geol. Soc. Japan, 18, pp. 79–108. Cerca con Google

Okumura, K. (2016) Earthquake Geology of the April 14 and 16, 2016 Kumamoto Earthquakes. Cerca con Google

Onda, Y., Ohsawa, S. and Takamatsu, N. (2003) ‘A colorimetric and geochemical study of the coloration factor of hyper-acid active crater lakes’, Jpn J Limnol, 64, pp. 1–10. Cerca con Google

Ono, K., Watanabe, K., Hoshizumi, H., Ikebe, S. (1995) ‘Ash eruption of the Naka-dake crater, Aso volcano, southwestern Japan’, Journal of Volcanology and Geothermal Research, 66(1–4), pp. 137–148. doi: 10.1016/0377-0273(94)00061-K. Cerca con Google

Ono, K. and Watanabe, K. (1985) ‘Geological Map of Aso Volcano’. Cerca con Google

Ono K, Matsumoto Y, Miyahisa M, Teraoka Y, K. N. (1977) ‘Geology of the Taketa district. Quadrangle Series 1:50000 Map’, Geol Surv Japan, pp. 1–145. Cerca con Google

Ono, K. and Watanabe, K. (1983) ‘Aso Caldera’, Earth Monthly, 44, pp. 73–82. Cerca con Google

Di Paola, G., Alberico, I., Aucelli, P.P.C., Matano, F., Rizzo, A., Vilardo, G. (2018) ‘Coastal subsidence detected by Synthetic Aperture Radar interferometry and its effects coupled with future sea-level rise: the case of the Sele Plain (Southern Italy).’, J. of Flood Risk Manag., 11, pp. 191–206. doi: 10.1111/jfr3.12308. Vai! Cerca con Google

Pasa, D. (2014) Valutazione del tasso di subsidenza nell’area di Ravenna attraverso tecniche avanzate di interferometria RADAR differenziale. Università degli Studi di Padova. Cerca con Google

Pasquali P., Cantone A., Riccardi P., Defilippi M., Ogushi F., Gagliano S., Tamura, M. (2014) ‘Mapping of ground deformations with interferometric stacking tecniques. Land applications of RADAR remote sensing’, InTech 2014, pp. 234–259. Cerca con Google

Prati, C. (2008) ‘Introduction to SAR and InSAR.’, in IV Conférence canadienne sur les géorisques: des cause à la gestion, Université Laval. Cerca con Google

Richards, J. A. (2009) ‘Remote Sensing with imaging RADAR.’, Springer Series on Signals and Communication Technology, p. 373. Cerca con Google

Sabins, F. F. (1997) Remote Sensing and Principles and Image Interpretation. New York: WH Freeman. Cerca con Google

Sagiya, T. (2004) ‘A decade of GEONET: 1994-2003 - The continuous GPS observation in Japan and its impact on earthquake studies -’, Earth, Planets and Space, 56(8), pp. 1994–2003. doi: 10.1186/BF03353077. Cerca con Google

Sarmap, S. A. (2009) ‘SAR-Guidebook. Synthetic Aperture Radar Systems and Signal Processing.’ Switzerland: Sarmap, S.A., pp. 1–274. Cerca con Google

Sarmap, S. A. (2014) ‘Sarscape 5.1 User Guide’. Switzerland: Sarmap, S.A., pp. 1–841. Cerca con Google

Seno, T., Maruyama, S. (1984) ‘Paleogeographic reconstruction and origin of the Philippine Sea.’, Tectonophysics, 102, pp. 53–84. Cerca con Google

Seno, T. (1985) ‘“Northern Honshu microplate” hypothesis and tectonics in the surrounding region’, Journal of Geodetic Society of Japan, 31, pp. 23–106. Cerca con Google

Shang-Ho, Y. (2008) Volcano Deformation Modeling Using Radar Inteferometry. VDM Verlag Dr. Mueller e.K. Cerca con Google

Shinjo, R. and Kato, Y. (2000) ‘Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin’, LITHOS. Elsevier, 54(3–4), pp. 117–137. doi: 10.1016/S0024-4937(00)00034-7. Cerca con Google

Shinohara, H., Yokoo, A. and Kazahaya, R. (2018) ‘Variation of volcanic gas composition during the eruptive period in 2014–2015 at Nakadake crater, Aso volcano, Japan’, Earth, Planets and Space. Springer Berlin Heidelberg, 70(1). doi: 10.1186/s40623-018-0919-0. Cerca con Google

Sibuet, J., Hsu, S., Shyu, C., Liu, C. (1995) Backarc Basin, Tectonics and Magmatism. Edited by B. Taylor. New York: Plenum Press. Cerca con Google

Sudo, Y., Tsutsui, T. and Nakaboh, M., Yoshikawa, M., Yoshikawa, S., Inoue, H. (2006) ‘Ground deformation and magma reservoir at Aso volcano: Location of deflation source derived from long-term geodetic surveys’, Bull. Volcanol. Soc. Jpn., 51(5), p. 291–309 (in Japanese with English abstract). doi: 10.18940/kazan.51.5_291. Cerca con Google

Sudo, Y. and Kong, L. (2001) ‘Three-dimensional seismic velocity structure beneath Aso Volcano, Kyushu, Japan’, Bulletin of Volcanology, 63(5), pp. 326–344. doi: 10.1007/s004450100145. Cerca con Google

Taira, A. (2001) ‘Tectonic Evolution of the Japanese Island Arc System’, Annual Review of Earth and Planetary Sciences, 29(1), pp. 109–134. doi: 10.1146/ Cerca con Google

Tessari, G., Floris, M., Pasquali, P. (2017) ‘Phase and amplitude analyses of SAR data for landslide detection and monitoring in non-urban areas located in the North-Eastern Italian pre-Alps.’, Environ. Earth Sci., 76(85). doi: Vai! Cerca con Google

Tessari, G. (2014) Caratterizzazione e modellazione di fenomeni geologici di instabilità attraverso tecniche di telerilevamento satellitare e simulazioni numeriche. Università degli Studi di Padova. Cerca con Google

Toda, S. et al. (2016) ‘Slip-partitioned surface ruptures for the Mw 7.0 16 April 2016 Kumamoto, Japan, earthquake’, Earth, Planets and Space. Springer Berlin Heidelberg, 68(1), p. 188. doi: 10.1186/s40623-016-0560-8. Cerca con Google

Tomás, R., Romero, R., Mulas, J., Marturià, J.J., Mallorquí, J.J., Lopez- Sanchez, J.M., Herrera, G., Gutiérrez, F., González, P.J., Fernández, J., Duque, S., Concha-Dimas, A., Cocksley, G., Castañeda, C., Carrasco, D., Blanco, P. (2014) ‘Radar interferometry techniques for the study of ground subsidence phenomena: a re-view of practical issues through cases in Spain.’, Environ. Earth. Sci., 71, pp. 163–181. doi: Vai! Cerca con Google

Tosi, L., Da Lio, C., Strozzi, T, Teatini, P. (2016) ‘Combining L- and X-Band SAR Interferometry to Assess Ground Displacements in Heterogeneous Coastal Environments: The Po River Delta and Venice Lagoon, Italy.’, Remote Sens., 308. doi: Vai! Cerca con Google

Triglia, D. S. (2010) Applicazioni di interferometria RADAR da satellite per la generazione di mappe di spostamento nell’analisi di fenomeni dinamici. University of Bologna. Cerca con Google

Tsukuda, E. (1992) ‘Active tectonics of southwest Japan arc controlled by the westward translation of the foreare sliver’, Memoirs of the Geological Society of Japan, (40), pp. 235–250. Cerca con Google

Unglert, K., Savage, M. K., Fournier, N., Ohkura, T., Abe, Y. (2011) ‘Shear wave splitting, vP/vS, and GPS during a time of enhanced activity at Aso caldera, Kyushu’, Journal of Geophysical Research: Solid Earth, 116(11), pp. 1–14. doi: 10.1029/2011JB008520. Cerca con Google

Usami, T. (1996) ‘Materials for Comprehensive List of Destructive Earthquakes in Japan.’ Tokyo: University of Tokyo Press, p. 423. Cerca con Google

Wasowski, J. and Bovenga, F. (2014) ‘Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: current issues and future perspectives’, Engineering Geology, 174, pp. 103–138. doi: 10.1016/j.enggeo.2014.03.003. Cerca con Google

Wunderman, R. (2012) ‘Global Volcanism Program, 2012. Report on Asosan (Japan). Smithsonian Institution’, Bulletin of the Global Volcanism Network, 37(8). Cerca con Google

Xie, M., Huang, J., Wang, L., Huang, J., Wang, Z. (2016) ‘Early landslide detection based on D-InSAR technique at the Wudongde hydropower reservoir’, Environ. Earth Sci., 75(717). doi: Vai! Cerca con Google

Yerro, A., Corominas, J., Monells, D., Mallorquí, J. J. (2014) ‘Analysis of the evolution of ground movements in a low densely urban area by means of DInSAR technique.’, Eng. Geol., 170, pp. 52–65. doi: 1016/j.enggeo.2013.12.002. Vai! Cerca con Google

Yu, C., Li, Z., Chen, J., Hu, J. C. (2018) ‘Small magnitude co-seismic deformation of the 2017 Mw 6.4 Nyingchi earthquake revealed by InSAR measurements with atmospheric correction.’, Remote Sens., 10(684). doi: 10.3390/rs10050684. Vai! Cerca con Google

Zhao, C.; Kang, Y.; Zhang, Q.; Lu, Z.; Li, B. (2018) ‘Landslide identification and monitoring along the Jinsha River catchment (Wudongde reservoir area), China, using the InSAR method.’, Remote Sens., 10(993). doi: Vai! Cerca con Google

Zhao, D., Yanada, T., Hasegawa, A., Umino, N., Wei, W. (2012) ‘Imaging the subducting slabs and mantle upwelling under the Japan Islands’, Geophysical Journal International, 190(2), pp. 816–828. Cerca con Google

Zhou, X., Chang, N. Bin and Li, S. (2009) ‘Applications of SAR interferometry in earth and environmental science research’, Sensors, 9(3), pp. 1876–1912. doi: 10.3390/s90301876 Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record