Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Contisciani, Martina (2019) A New Approach for Community Detection in Multilayer Networks. [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF
6Mb

Abstract

In this work, we propose a new approach for clustering multilayer and attributed networks, which captures the emergent behaviour of complex systems. The goal is to assign each network node (shared across network layers) to clusters, considering altogether the extra information carried by nodes and the connectivity patterns in each layer. This is a challenging task because one has to combine two types of information (Yang et al., 2013), while leveraging the extent to which topological and attribute information contribute to the network’s partition (Falih et al., 2018). We present an extension of the existing MultiTensor (MT) model recently developed by De Bacco et al. (2017), which performs an overlapping community detection task on multilayer networks by taking into account the interactions among the system’s constituents. Specifically, we describe MultiTensorCov (MTCov): this model considers both sources of information for uncovering groups of nodes that are structurally close but also share some common characteristics.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Matematica
Uncontrolled Keywords:community detection, network data analysis, generative algorithm
Subjects:Area 01 - Scienze matematiche e informatiche > MAT/09 Ricerca operativa
Codice ID:63015
Relatore: Rinaldi, Francesco
Data della tesi:19 September 2019
Biblioteca:Polo di Scienze > Biblioteca di Matematica
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Solo per lo Staff dell Archivio: Modifica questo record