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Abstract

Let p a prime number, q a power of p and V a scheme of finite type over Fq. In this thesis
we present Dwork’s proof of the rationality of zeta function of V . It is based on methods
of p-adic analysis.
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1
Introduction

1.1 Objective

The study of zeta functions is very important, some applications of zeta functions are in
number theory, in algebraic geometry and also in physics.

There is a long list of zeta functions, most of them are analogous to the Riemann
zeta function:

ζ(s) =
∞∑
s=0

1

ns
,

where s is a complex variable. In this work we are precisely interested in zeta functions
which are analogous to Riemann zeta function.

Definition 1.1.1. Let K be a field. A scheme of finite type over K is a scheme with a
finite cover of spectra of finitely generated K-algebras.

Let p be a prime number. Fix a power q of p. Let V be a scheme of finite type over
Fq. Denote by |V | the set of closed points of V .

Definition 1.1.2. If x ∈ |V |, the residue field K(x) is a finite extension of Fq. The
degree of x is deg(x) := [K(x) : Fq].

Remark 1.1.3. A point of V with values in Fqk is a morphism of Fq-schemes Spec(Fqk) →
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V . The data of such a point is equivalent to that of its image x ∈ |V | and of the local
morphism of Fq-algebras OV,x → Fqk i.e of a Fq-morphism K(x) → Fqk .

The closed point x being fixed, there are deg(x) such points.

We denote by V (Fqk) the set of Fqk-points of V .

Lemma 1.1.4. If d ∈ Z > 0, there are finitely many closed points of degree d in V .

Proof. V is of finite type over Fq : it can be covered by finitely many affine Fq-schemes
of finite type so we can reduce to the case V = Spec(A) where A ≃ Fq[X1, . . . , Xr]/I for
some ideal I.

The result follows from the fact that there are finitely many Fq-morphisms A → Fqd

(at most qdr).

Definition 1.1.5. The zeta-function of V is

ZV (T ) =
∏
x∈|V |

1

1− T deg(x)
∈ Z[[T ]]

(the product converges in Z[[T ]] thanks to lemma 1.1.4).

Lemma 1.1.6. We have ZV (T ) = exp
( ∞∑

k=1

#V (F
qk

)Tk

k

)
.

Proof. Taking logarithm in Q[[T ]] we have:

log(ZV (T )) =
∑
x∈|V |

− log(1− T deg(x)) =
∑
x∈|V |

∞∑
k=1

T deg(x)k

k
=

∞∑
d=1

Nd(V )

d
T d

where Nd(V ) =
∑

x∈|V |,deg(x)|d
deg(x) = #V (Fqd).

Remark 1.1.7.

ZV (q
−s) =

∏
x∈|V |

1

1− q−s deg(x)

=
∏
x∈|V |

1

1−N(x)−s

where N(x) = #K(x).
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The purpose of this work is to give the detailed proof of the following theorem:

Theorem 1.1.8. (Dwork, 1960 [1])

ZV (T ) ∈ Q(T ).

Remark 1.1.9.

If V is of finite type over Fq then it is also of finite type over Fp so we may restrict to
varieties over Fp. Indeed, we have [K(x) : Fp] = [K(x) : Fq]d with d = [Fq : Fp], so

ZV/Fp(T ) =
∏
x∈|V |

1

1− T [K(x):Fp]
=

∏
x∈|V |

1

1− T d deg(x)

= ZV/Fq(T
d).

If theorem 1.1.8 is known when q = p, then we have ZV/Fq(T
d) ∈ Q(T ) ∩ Z[[T d]] and

theorem 1.1.8 follows from next lemma.

Lemma 1.1.10. Q(T ) ∩ Z[[T d]] ⊂ Q(T d).

Proof. It suffices to show that C(T ) ∩ Z[[T d]] ⊂ C(T d). Let P (T )
Q(T )

∈ C(T ) ∩ Z[[T d]] with
P,Q ∈ C(T ) and gcd(P,Q) = 1. Let ζ a primitive d-th root of unity. Then we have

P (ζT )

Q(ζT )
=
P (T )

Q(T )
=⇒ P (ζT )Q(T ) = P (T )Q(ζT )

=⇒ P (T )|P (ζT ) by Gauss’s theorem
=⇒ P (T ) = P (ζT )

Therefore P (ζ iT ) = P (T ), so P (T ) = 1
d

d−1∑
i=0

P (ζ iT ) ∈ C[T d], and similarly Q(T ) ∈

C[T d].

1.2 Reduction to the case where V is a hypersurface

Lemma 1.2.1. If V = V ′ ∪ V ′′ where V ′, V ′′ are subschemes then

ZV (T ) =
ZV ′(T )ZV ′′(T )

ZV ′∩V ′′(T )
.
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Proof. Follows from the definition of ZV (T ).

Lemma 1.2.2. The theorem follows from the special case where V = V (f) ⊂ Ad
Fp

: zero
locus of f , for some polynomial f(X) ∈ Fp[X1, . . . , Xd].

Proof. As seen above we may restrict to the case q = p.

As V is of finite type over Fp, we can write V = ∪r
i=1Vi where V1, . . . , Vr are affine

subschemes. By the previous lemma, we have

ZV (T ) =
∏

I⊂{1,...,r},I ̸=∅

ZVI
(T )(−1)#I−1

where VI = ∩i∈IVi for all I ⊂ {1, . . . , r}; it is enough to show that I ̸= ∅ =⇒ ZVI
(T ) ∈

Q(T ).

As VI is a subscheme of an affine scheme when I ̸= ∅, it is separated: we may reduce
to the case where V is separated. Then all the VI are affine (cf [2], Chap 3.3, Prop 3.6):
we can restrict to the case where V is affine.

We can write V = V (I) ⊂ Ad
Fp

where I = ⟨f1, . . . , fm⟩ ⊂ Fp[X1, . . . , Xd] is an ideal.
Assume m > 1 and let V ′ = V (⟨f1, . . . , fm⟩), V ′′ = V (fm). Then V = V ′ ∩ V ′′: by the
previous lemma, we have

ZV (T ) =
ZV ′(T )V ′′(T )

ZV ′∪V ′′(T )

as V = V ′ ∪ V ′′ = V (⟨f1, . . . , fm−1fm⟩) an induction reduces to the case m = 1.

The theorem 1.1.8 is the first part of the Weil conjectures which were proposed in
1949 by André Weil. We recall these conjectures:

Conjecture 1.2.3. (Weil conjectures,1949) Suppose thatX is a non-singular n-dimensional
projective algebraic variety over the field Fq with q elements. The zeta function ZX(T )

of X is the same as above with T = q−s and denoted also Z(X, s). Then we have:

(1) (Rationality) ZV is a rational function. More precisely, ZV can be written as a
finite alternating product:

2n∏
i=0

Pi(T )
(−1)i+1

=
P1(T ) · · ·P2n−1(T )

P0(T ) · · ·P2n(T )
,
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where each Pi(T ) ∈ Z[T ]. Moreover, P0(T ) = 1 − T , P2n(T ) = 1 − qnT and for
1 ≤ i ≤ 2n− 1, Pi(T ) =

∏
j

(1− αijT ) with αij ∈ C.

(2) (Functional equation and Poincaré duality) The zeta function satisfies Z(X,n−
s) = ±q nE

2
−EsZ(X, s) or equivalently Z(X, q−nT−1) = ±q nE

2 ZX(T ) where X is the
Euler characteristic of X. In particular, for each i, the numbers α2n−i,i, α2n−i,2, . . .

equal the numbers qnαi,1, q
nαi,2, . . . in some order.

(3) (Analogue of Riemann hypothesis) |αij| = qi/2 for 1 ≤ i ≤ 2n − 1 and for all
j. Thus all zeros of Pi(T ) are on the line of complex numbers s with real part i/2.

(4) (Betti numbers) If X is the reduction modulo p of a non-singular projective
variety Y defined over a number field embedded in the field of complex numbers,
then the degree of Pi is the ith Betti number of the space of complex points of Y .

The functional equation was proved by Alexander Grothendieck (1965), and the analogue
of the Riemann hypothesis by Pierre Deligne (1974).

It is now worth illustrating this theorem with some examples:

Example 1.2.4.

1) Consider V = An
Fq

the n-dimensional affine space over Fq.
The number of Fqs-rational points of V is

Ns = #V (Fqs)

= #{x ∈ An|x ∈ Fqs}
= qns.

We have

ZAn(T ) = exp
( ∞∑

s=1

Ns

s
T s

)
= exp

( ∞∑
s=1

qns

s
T s

)
= exp

( ∞∑
s=1

(qnT )s

s

)
= exp

(
− log(1− qnT )

)
=

1

1− qnT
∈ Q(T ).
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2) Consider the n-dimensional projective space V = Pn
Fq

. We know that Pn = Pn−1⊔An,
so V (Fqs) = Pn−1(Fqs) ⊔ An(Fqs).
By lemma 1.2.1 we have

ZPn(T ) = ZPn−1(T )ZAn(T ).

By induction, we obtain

ZPn(T ) =
1

(1− T )(1− qT ) · · · (1− qnT )
.

1.3 Plan of the work

• At the beginning we explained how we can reduce the zeta function for any algebraic
varieties into zeta functions defined on hypersurfaces. Then we shall see some
definitions and results about the terms in which we will use throughout this work.

• Secondly we introduce the criteria for rationality.

• Finally, we will see the construction of a power series that relates the character of
finite field and the p-adic expression of the zeta function. After that we complete
the proof of the theorem.
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2
Backgrounds

This chapter is devoted to all definitions and properties of the mathematical objects that
we are going to use in the rest of this text.

2.1 Cyclotomic polynomials

Definition 2.1.1. Let F be a field and n ∈ Z>0 prime to char(F ). A primitive n-th root
of 1 is an element ζ ∈ F such that ζn = 1 and ζm ̸= 1 if 0 < m < n.

The n-th roots of unity in C are ζ = e2iπ
k
n where k ∈ {0, . . . , n− 1}.

Definition 2.1.2. Let n be a positive integer, the n-th cyclotomic polynomial is
defined by

Φn(X) =
∏

1≤k≤n

gcd(k,n)=1

(X − e2iπ
k
n ).

Proposition 2.1.3. For all n ∈ Z>0, we have:

(i) Xn − 1 =
∏
d|n

Φd(X)

(ii) Φn(X) ∈ Z[X].

7



2.2 Teichmüller representatives

Teichmüller representatives are induced from a canonical map lifting elements in Fp
× into

roots of unity in characteristic 0.

Let Qp be an algebraic closure of Qp.

The absolute value |.|p extends uniquely to Qp: denote by Cp the completion of Qp

with respect to |.|p. This is an algebraically closed field, and its residue field coincides
with that of Qp: it is isomorphic to Fp.

Proposition 2.2.1. There exists a unique map Fp
[.]−→ OCp such that:

(i) For all x ∈ Fp [x] maps to x in the residue field Fp.

(ii) (∀x, y ∈ Fp) [xy] = [x][y].

Proof. (i) Let x ∈ Fp. There exists n ∈ Z>0 such that x is a root of Pn(X) = Xpn−X ∈
Z[X]. If x̃ ∈ OCp lifts x then Pn(x̃) maps to 0 in Fp and P ′

n(x̃) = pnx̃p
n−1 − 1 maps

to −1 ∈ Fp
×. By Newton’s lemma, there exists a unique [x] ∈ OCp such that

Pn([x]) = 0 and [x] maps to x in Fp.

(ii) Let y ∈ Fp. We may assume that y ∈ Fpn : we have Pn([y]) = 0 ⇒ [y]p
n
= [y] and

[x]p
n
= [x] so ([x][y])p

n
= [x][y]. As [x][y] maps to xy in Fp, we have [x][y] = [xy] by

unicity.

Definition 2.2.2. [x] is called the Teichmüller representative of x.

Example 2.2.3.

(1) [0] = 0

(2) If x ∈ F×
pn then [x] is a (pn − 1)-th root of unity.

Remark 2.2.4.

• In general [x+ y] is not equal to [x] + [y] i.e [.] is not a ring homomorphism.

• If n ∈ Z>0, the elements {[x]}x∈Fpn
generate the unique unramified extension of

degree n of Qp.
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2.3 Characters

Let Ω be an algebraically closed field of characteristic 0.

Definition 2.3.1. [3] A character on a group G is a group homomorphism χ from G

to the multiplicative group Ω×. The set of characters of G form an abelian group called
the dual of G, denoted by Ĝ.

A character is trivial if χ(g) = 1 for every g ∈ G.

Let G be a finite abelian group. Set n = #G.

We have χ(G) ⊂ µn := {x ∈ Ω|xn = 1}.

Indeed, for every g ∈ G, we have gn = 1 therefore χ(g)n = χ(gn) = χ(1) = 1.

Lemma 2.3.2. Let H < G a subgroup of G and let Ĝ f−→ Ĥ be the restriction map.
Then f is surjective.

Proof. Let χ ∈ Ĥ, let’s show that there exists η ∈ Ĝ such that η∣∣H = χ.

It suffices to show this in the case where G is generated by H and an element g0. If
g ∈ G, there exist h ∈ H and k ∈ Z such that g = hgk0 .

If η exists then η(g) = χ(h)η(g0)
k, we need to construct η(g0).

Let r = min{k ∈ N>0|gk0 ∈ H}.

It follows that {k ∈ Z>0|gk0 ∈ H} = rZ.

Yet
gr0 ∈ H =⇒ χ(gr0) = η(gr0) = η(g0)

r.

Let ζ ∈ ⩽̸× such that ζr = χ(gr0).
Set

G
η−→ C×

g = hgk0 7→ χ(h)ζk,

• η is well-defined:

9



hgk0 = h′gk
′

0 =⇒ h−1h′ = gk−k′

0 =⇒ k − k′ ∈ rZ i.e k′ = k + rz for some z ∈ Z.
Then hgk0 = h′gk+rz

0 =⇒ h = h′(gr0)
z, and so

χ(h) = χ(h′)(χ(gr0))
z = χ(h′)ζrz,

hence
χ(h)ζk = χ(h′)ζrz+k = χ(h′)ζk

′
.

• η is a group homomorphism: let g1 = h1g
k1
0 , g2 = h2g

k2
0 then η(g1g2) = χ(h1h2)ζ

k1k2 =

χ(h1)χ(h2)ζ
k1ζk2 = η(g1)η(g2).

Proposition 2.3.3. Ĝ is non canonically isomorphic to G.

Proof. G can be written as a finite product of cyclic groups: we may restrict to the case
where G = Z/nZ. Then we have an isomorphism

µn → Ĝ

ζ 7→ (k̄ 7→ ζk).

This result follows from the existence of a non canonical isomorphism µn ≃ Z/nZ.

Consider the following map:

G
ev−→ ̂̂

G

g 7→
(
evg : χ 7→ χ(g)

)
.

It is straightforward to see that ev is a group homomorphism.

We have further the following lemma:

Theorem 2.3.4. ev is an isomorphism.

2.3.2

Proof. As # ̂̂
G = #Ĝ = #G by proposition 2.3.3, it is enough to show that ev is injective.

Let g ∈ G\{e} with e the neutral element of G. Put H = ⟨g⟩ ∼= Z/aZ. We have Ĥ ≃ µa,

(∃ φ ∈ Ĥ), φ(g) = e
2πi
a .
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By lemma 2.3.3, there exists χ ∈ G such that χ|<g> = φ so that χ(g) = φ(g) ̸= 1.

Example 2.3.5. Additive characters of finite fields Let p be a prime number and
q = pk.

1) Let ε ∈ Ω× is a primitive p-th root of unity. The map

χ : Fp → Ω×

a 7→ εa

is a non trivial character of the additive group of Fp.

2) Recall that the trace map is defined by:

Tr : Fq → Fq

a 7→
k−1∑
i=0

σi(a),

where σi(a) = ap
i , are all the automorphisms of the finite field extension Fq/Fp.

So Tr(a) = a+ ap + ap
2
+ · · ·+ ap

k−1 and

(Tr(a))p =
( k−1∑

i=0

σi(a)
)p

=
k−1∑
i=0

σi(a)
p =

k−1∑
i=0

(ap
i

)p

This implies that Tr(a) ∈ Fp so that the trace induces a map Tr : Fq → Fp.

Therefore we have the following composition which provides a non trivial character
of the additive group of Fq:

Fq → Fp → Ω×

a 7→ Tr(a) 7→ εTr(a).

2.4 Sylvester relation

Definition 2.4.1. Let R be a ring and A = (ai,j)0≤i,j≤m ∈Mm+1(R).

11



The determinant of A is det(A), equal to
m∑
i=0

(−1)i+jaijMij where Mij is the determinant

of minor matrix (the determinant of A by deleting the row i and column j ): homogeneous
polynomial of degree m+ 1 with respect to the whole variables aij and of degree 1 with
respect to each variable aij.

It can also be expressed by the Leibniz formula:

det(A) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

ai,σi

)
where sgn(σ) is the signature of the permutation.

Lemma 2.4.2. (Sylvester relation,[4]) Let A ∈ Mm+1(R) and let D = det(A). Set
Aij = (−1)i+jMij. Let d be the determinant of the matrix obtained by removing the
extreme rows and columns. Then:

Dd = A0,0Am,m − A0,mAm,0. (3.3)

Proof. Without loss of generality, we may assume that R = Z[Xi,j]0≤i,j≤m and A =

(Xi,j)0≤i,j≤m.

We prove this by considering D′ the determinant D′ of B = (bij)0≤i,j≤m defined by:

b0j = A0j, bmj = Amj, and if i ̸= 0, bij = 1 if i = j, 0 otherwise.

We have

D′ = det(B) =

∣∣∣∣∣∣∣∣∣∣∣

A0,0 A0,1 A0,2 . . . A0,m

0 1 0 . . . 0
... . . . . . . . . . ...
0 0 0 1 0

Am,0 Am,1 Am,2 . . . Am,m

∣∣∣∣∣∣∣∣∣∣∣
and it is equal to

A0,0Am,m − A0,mAm,0.
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We have as before

A =


a0,0 a0,1 . . . . . . a0,m
a1,0 a1,1 . . . . . . a1,m

... ... . . . . . .
...

am−1,0 am−1,1 . . . . . . am−1,m

am,0 am,1 . . . . . . am,m

 .

Yet det(AB) = det(A) det(B) = DD′ and C = com(A) = (Aij)0≤i,j≤m and

D In+1 = ACt.

We have

ACt =


a0,0 a0,1 . . . . . . a0,m
a1,0 a1,1 . . . . . . a1,m

... ... . . . . . .
...

am−1,0 am−1,1 . . . . . . am−1,m

am,0 am,1 . . . . . . am,m



A0,0 A1,0 A2,0 . . . Am,0

A0,1 A1,1 A2,1 . . . Am,1

... . . . . . . . . . ...
A0,m A1,m A2,m . . . Am,m

 .

By identification, we get for instance

a0,0A0,0 + a1,0A1,0 + · · ·+ am,0Am,0 = D and a0,0A0,1 + a1,0A1,1 + · · ·+ am,0Am,1 = 0.

Therefore

det(BA) =

∣∣∣∣∣∣∣∣∣∣∣

D 0 . . . . . . 0

a1,0 a1,1 . . . . . . a1,m
... ... . . . . . .

...
am−1,0 am−1,1 . . . . . . am−1,m

0 . . . . . . 0 D

∣∣∣∣∣∣∣∣∣∣∣
= D2

∣∣∣∣∣∣∣
a1,0 a1,1 . . . . . . a1,m

... ... . . . . . .
...

am−1,0 am−1,1 . . . . . . am−1,m

∣∣∣∣∣∣∣ = D2d.

Therefore it follows that:

DD′ = D2d.
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Since DD′ = D(A0,0Am,m − A0,mAm,0) and as D ̸= 0 and R is a domain then we proved
Sylvester’s relation.
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3
Conditions for rationality

In the following we will see the criteria for rationality of power series.

3.1 Criteria from linear algebra

Consider a power series F (T ) =
∞∑
i=0

aiT
i ∈ K[[T ]] where K is a field.

Let m, s be two integers with m, s ≥ 0 and let As,m be a matrix m × m given by
(as+i+j)0≤i,j≤m.

Denote by Ns,m the determinant of the matrix As,m.

Proposition 3.1.1. The following are equivalent:

(i) F is a rational function, i.e it can be written in the form F (T ) = P (T )
Q(T )

where
P (T ), Q(T ) ∈ K[T ] with Q(T ) ̸= 0.

(ii) There exist two integers m ≥ 0 and S ≥ 0 such that whenever s ≥ S we have
Ns,m = 0.

Proof. (i)⇒ (ii)
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Write F (T ) = P (T )
Q(T )

. So we get

F (T )Q(T ) = P (T ). (3.1)

Write Q(T ) =
N∑
i=0

ciT
i and put M = deg(P ): the LHS (left hand side) is

∞∑
i=0

( N∑
j=0

ai−N+jcN−j

)
T i.

The equality (3.1) implies that for all i > max(M,N) we have

N∑
j=0

ai−N+jcN−j = 0. (3.2)

Therefore we obtain a system of dependent linear equations. Take S = max(M−N+1, 1)

and m = N . Put X = (cN , cN−1, . . . , c0): if s ≥ S, equations (3.2) imply that XAs,m = 0,
as X ̸= 0 then Ns,m = 0.

(ii) ⇒ (i)

Suppose that there exist integers m ≥ 0 and S such that Ns,m = 0 when s ≥ S,
choose m to be the minimal satisfying this property. We may assume that (an)n∈N is not
stationary, so that m > 0.

We first claim that Ns,m−1 ̸= 0 for all s ≥ S.

By contradiction, let S ′ ≥ S such that NS′,m−1 = 0.

Applying Sylvester’s relation to D = Ns,m and

d = det(as+2+i+j)0≤i,j≤m−2 = Ns+2,m−2

A00 = det(as+2+i+j)0≤i,j≤m−1 = Ns+2,m−1

Amm = det(as+i+j)0≤i,j≤m−1 = Ns,m−1

A0m = det(as+1+i+j)0≤i,j≤m−1 = Ns+1,m−1 = Am0.

So we have

Ns,mNs+2,m−2 = Ns+2,m−1Ns,m−1 − (Ns+1,m−1)
2 for m ≥ 2.
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Let s ≥ S ′.

Assume Ns,m−1 = 0: we have Ns,m = 0 thus Ns+1,m−1 = 0. By induction, this implies
that Ns,m−1 = 0 for all s ≥ S ′. This contradicts the minimality of m.

As Ns,m = 0 and Ns,m−1 ̸= 0, the rank of the matrix As,m is m. This implies that the
K-vector space ker(As,m) = {X ∈ Km+1|XAs,m = 0} has dimension 1. As Ns,m−1 ̸= 0

and Ns+1,m−1 ̸= 0, this space coincides with the kernel of the matrix obtained by removing
the first or the last line. This shows that ker(As,m) = ker(As+1,m).

Let X = (cm, cm−1, . . . , c0) be a generator of ker(As,m). If cm = 0 then X̃As+1,m−1 = 0

where X̃ = (cm−1, . . . , c0) ̸= 0 implying that Ns+1,m−1 = 0 which is a contradiction. So
we have cm ̸= 0.

Put
Q(T ) =

m∑
i=0

ciT
i.

What precedes shows that Q(T )F (T ) ∈ K[T ], so F (T ) is rational.

3.2 Analytic criteria

Now let Ω be an algebraically closed, complete valued field which contains Qp. The usual
p-adic absolute value on Qp extends into an absolute value |.|p : Ω −→ R≥0.

Definition 3.2.1. Let a power series F (t) =
∞∑
i=0

ait
i ∈ Ω[[t]].

We say that:

- F is holomorphic in the disc |t|p < r if it converges absolutely in this disc.

- A meromorphic function is a quotient of two holomorphic functions.

Proposition 3.2.2. (Weirstrass Preparation Theorem) If F is holomorphic in the disc
|t|p < r and if r′ < r then F = P.h where P is a polynomial, h is an invertible holomorphic
power series in the disc |t|p < r′.
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The proof of this is more sophisticated since we have to use the Newton polygon so we
refer the idea of the proof in the chapter 4 of [5].

Lemma 3.2.3. Let x ∈ Z. If |x|.|x|p < 1 then x = 0.

Proof. Suppose x ̸= 0, we have x = ±
∏
q

qvq(x) then |x| =
∏
q

qvq(x) and |x|p = p−vq(x).

Thus |x|.|x|p =
∏
q ̸=p

qvq(x) ≥ 1 which is a contradiction.

Proposition 3.2.4. Let F (t) =
∞∑
i=0

Ait
i ∈ Z[[t]] and let p a prime number.

Suppose there exist R and r ∈ R with Rr > 1, such that F is meromorphic in the disc
|t| < R of C and also in the disc |t|p < r of Ω. Then F is rational.

Proof. Since by hypothesis, F is meromorphic in the disc |t|p < r then F can be written
of the form F (t) = B(t)

A(t)
where A(t) =

∞∑
i=0

ait
i, B(t) =

∞∑
i=0

Bit
i ∈ Ω[[t]] are holomorphic in

the disc |t|p < r.

This implies that

B(t) = A(t)F (t). (3.2)

By using the proposition (3.2.2), we may reduce r a little and assume that A is a
polynomial and that a0 = 1.

Reducing r and R a little, then we obtain the inequalities for s large enough:

|Bs|p < r−s (3.3)
|As| < R−s. (3.4)

Now we are going to apply the criterion of proposition (3.1.1) for rationality.

We need to find m ≥ 0 such that we have Ns,m = 0 for s large enough.

So let e be the degree of the polynomial A, since Rr > 1, choose m such that
Rm+1rm+1−e = k is greater than 1.
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By the equality (3.2), we have

∞∑
i=0

Bit
i =

∞∑
i=0

( e∑
j=0

ae−jAi+j−e

)
ti.

By identification for the monomial of degree s+ e we have:

Bs+e = As+e + · · ·+ ae−1As+1 + aeAs.

Recall

Ns,m = det


As As+1 . . . As+e−1 As+e . . . As+m

As+1 As+2 . . . . . . . . . . . . As+m+1

... ... . . .
... ... ... ...

As+m As+m+1 . . . . . . . . . . . . As+2m

 .

We can replace As+i+j by Bs+i+j for j ≥ e, it doesn’t change the determinant Ns,m.

By the relation (3.3) and as |As|p ≤ 1, we have

|Ns,m|p ≤ r−(m−e+1)s

for s large enough Also we have for s large enough

|Ns,m| ≤ R−(m+1)(s+2m).

Indeed, we make use of the inegality of Hadamard which says that |Ns,m|2 ≤
m∏
i=0

( m∑
j=0

A2
s+i+j

)
:

we have

|Ns,m|2 ≤
m∏
i=0

( m∑
j=0

R−2(s+i+j)
)
=

m∏
i=0

R−2(s+i)(1 +R−2 + · · ·+R−2m)

≤ (1 +R−2 + · · ·+R−2m)m+1R
−2

m∑
i=0

(s+i)

≤ (1 +R−2 + · · ·+R−2m)m+1R−(m+1)(2s+m)

then |Ns,m| ≤ k1R
−(m+1) where k1 = (1+R−2 + · · ·+R−2m)

m+1
2 R−m(m+1)

2 doesn’t depend
on s. Since |Ns,m|.|Ns,m|p < 1 for s large enough therefore by lemma (3.2.3) Ns,m = 0.
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We will be building a power series that can factorize the additive character seen in the
example (2.3.5).
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4
Rationality

4.1 Construction: factorization of additive charac-
ters of the finite field Fq

Let Ω be the completion of the algebraic closure of the field of p-adic numbers, it is
algebraically closed. Let ε = λ+ 1 ∈ Ω be a primitive p-th root of unity.

Lemma 4.1.1. Let ε = λ+ 1 be a p-th root of unity as above. Then ord(λ) = 1
p−1

.

Proof. Since (X − 1)p = Xp − 1 + p(X − 1)A[X] with A[X] ∈ Z[X] of degree p− 1 then

(X − 1)p−1 =
Xp − 1

X − 1
+ pA(X) and A(1) = −1.

At X = ε, we have λp−1 = pA(ε) therefore (p − 1) ord(λ) ≥ 1 and this implies that

ord(λ) > 0. By the Taylor expansion of A we have: A(ε)− A(1) =
p−2∑
i=1

A(i)(1)
i!

(ε− 1)i. So

ord(A(ε)−A(1)) ≥ ord(λ) > 0, A(1) = −1 =⇒ ord(A(ε)) = 0. Hence ord(λ) = 1
p−1

.

Let a ∈ F×
q and t = [a] ∈ Zq (where Zq is the ring of integers of the unramified extension

Qp of Q lifting Fq/Fp) its Teichmüller representative: t is a (q − 1)-th root of 1 lifting a.

Remark 4.1.2. The conjugates of the Teichmüller representative of a are the conjugates
of t in Ω: these are the Teichmüller representatives of the conjugates of a.
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We will be looking for a power series with indeterminate variable T whose value T = t

is εTr(a).

The easiest power series is (1+Y )t+tp+···+tp
s−1 : at Y = λ this gives εTr(a). Unfortunately

this series is not convergent, we will have to find a suitable one.

Put H(T, Y ) = (1 + Y )T =
∞∑
i=0

(
T
i

)
Y i so H(T, Y ) ∈ Q[[T, Y ]] and

F (T, Y ) = H(T, Y )H
(T p − T

p
, Y p

)
H
(T p2 − T p

p2
, Y p2

)
· · · (2.4)

= F (T, Y ) = (1 + Y )T (1 + Y p)
Tp−T

p (1 + Y p2)
Tp2−Tp

p2 · · ·

infinite product of power series. It is easily seen that F (T, Y ) is a convergent power
series in (Q[T ])[[Y ]] i.e we have F (T, Y ) =

∞∑
m=0

Pm(T )Y
m. In particular, we can evaluate

F (T, Y ) at T = t and get F (t, Y ) ∈ Qq[[Y ]].

Remark 4.1.3. deg(Pm) ≤ m for all m ∈ N.

Lemma 4.1.4. (Dwork) Let f(X) =
∞∑
i=0

aiX
i ∈ Qq[X] with a0 = 1. Let σ be the Frobe-

nius automorphism of Qq. Then f(X) ∈ 1 +XZq[X] if and only if (σf(Xp))/(f(X))p ∈
1 + pXZq[X].

Proof. (⇒) Write F (X) = 1 +XG(X) with G(X) ∈ Zq[[X]]: we have

σF (Xp) = 1 +XpσG(Xp).

As σ is congruent to the p-th power map modulo p, we have

σF (Xp) ≡ G(X)p mod pZq[[X]]

so that σF (Xp) ≡ 1 + XpG(Xp) mod pXZq[[X]]. As F (X)p = (1 + G(X))p ≡ 1 +

XpG(Xp) mod pXZq[[X]], we have

σF (Xp) ≡F (X)p mod pXZq[[X]]

i.e σF (Xp)

F (X)p
≡1 mod pXZq[[X]] since F (X) ∈ 1 +XZq[[X]] ⊂ Zq[[X]]×.

Whence σF (Xp)
F (X)p

∈ 1 + pXZq[[X]].
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(⇐) Write σF (Xp)
F (X)p

=
∞∑
i=0

biX
i: we have b0 = 1 and bi ∈ pZq if i > 0.

We prove by induction on n that ai ∈ Zq for all i ∈ {0, . . . , n}. This holds for n = 0

since a0 = 1 by hypothesis: assume n > 0. We have σF (Xp) = F (X)p
∞∑
i=0

biX
i

i.e
∞∑
j=0

σ(aj)X
pj =

( ∞∑
k=0

akX
k
)p( ∞∑

i=0

biX
i
)
.

The coefficient of Xn in the LHS is
{
0 if p ∤ n
σ(an/p) if p|n.

The coefficient of Xn in the RHS is equal to that of

( ∞∑
k=0

akX
k
)p( ∞∑

i=0

biX
i
)

i.e to that of
(
(

∞∑
k=0

akX
k)p+panX

n
)( ∞∑

i=0

biX
i
)

i.e to pan plus to that of
(
(
n−1∑
k=0

akX
k)p

)(
1+

n∑
i=1

biX
i
)

. The latter belongs to Zq and it is congruent to the coefficient of
n−1∑
k=0

apkX
kp

modulo p which is equal to 0 if p ∤ n and apn/p if p|n.

Finally we have

0 ≡ pan mod pZqifp ∤ n
σ(an/p) ≡ pan + apn/p mod pZq if p|n.

As σ(an/p) ≡ apn/p mod pZq when p|n we have pan ∈ pZq in all cases i.e F (X) ∈ 1 +

XZq[[X]].

Similarly:

Lemma 4.1.5. Let f(T, Y ) ∈ Qq[[T, Y ]] such that f(0, 0) = 1. Then f(T, Y ) ∈ 1 +

TZq[[T, Y ]] if and only if σf(T p,Y p)
f(T,Y )p

∈ 1 + pTZq[[T, Y ]] + pY Zq[[T, Y ]].

Lemma 4.1.6. F (T, Y ) ∈ Zp[[T, Y ]].
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Proof. Let’s computes F (T p, Y p)/F (T, Y )p:

F (T p, Y p) = (1 + Y p)T
p

(1 + Y p2)
Tp2−Tp

p (1 + Y p3)
Tp3−Tp2

p2 . . . ,

and

F (T, Y )p = (1 + Y )Tp(1 + Y p)T
p−T (1 + Y p2)

Tp2−Tp

p . . . ,

therefore we have

F (T p, Y p)/F (T, Y )p = (1 + Y p)T/(1 + Y )pT .

Yet by the lemma (4.1.4) applied to F (Y ) = 1+ Y , the series (1 + Y p)/(1 + Y )p is of the
form 1 + pG where G is a power series without constant term where the coefficients is in
Zq. So F (T p, Y p)/F (T, Y )p is of the same form.
It follows from the lemma (4.1.4) that F (T, Y ) ∈ Zq[[Y ]].

Proposition 4.1.7. For every s ≥ 1, the additive character εTr(a) can be written as

θ(t)θ(tp) · · · θ(tps−1

),

where t is the Teichmüller representative of a and where θ(T ) =
∞∑

m=0

βmT
m ∈ Qq(ε)[[T ]]

satisfies ord(βm) ≥ m
p−1

for all m ∈ N.

Proof. Recall that

F (T, Y ) = (1 + Y )T (1 + Y p)
Tp−T

p (1 + Y p2)
Tp2−Tp

p2 · · · =
∞∑

m=0

Pm(T )Y
m

where Pm(T ) ∈ Qp[X] has degree ≥ m. Thus

F (T, Y ) =
∞∑

m=0

αm(Y )Tm

where αm(Y ) is a formal series whose first term has degree ≥ m, with coefficients in Zp.
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Indeed, each term in the binomial series (1 + Y pn)
Tpn−Tpn−1

pn :

(T pn − T pn−1

pn

)(T pn − T pn−1

pn
− 1

)
. . .

(T pn − T pn−1

pn
− k + 1

)Y pnk

k!

has a degree ≤ pnk on T , pnk exponent of Y .

We have λ = ε− 1 and ord(λ) = 1
p−1

.

Set:
θ(T ) = F (T, λ) =

∞∑
m=0

βmT
m,

with βm = αm(λ) (this series converges as ord(λ) > 0 by lemma 4.1.1).

We have as said above αm(Y ) starts with Y m so

ord(βm) ≥ ord(λm) =
m

p− 1
. (2.6)

Therefore the series θ converges in the disc ord(T ) > −1
p−1

.

Recall that
Tr(t) = t+ tp + · · ·+ tp

s−1 ∈ Zp.

We have
(1 + Y )Tr(t) = F (t, Y )F (tp, Y ) · · ·F (tps−1

, Y ).

Indeed,

F (t, Y )F (tp, Y ) · · ·F (tps−1

, Y ) = (1 + Y )t(1 + Y p)
tp−t

p · · · (1 + Y )t
p

(1 + Y p)
tp

2
−tp

p · · ·

(1 + Y )t
ps−1

(1 + Y p)
tp

s
−tp

s−1

p · · ·

= (1 + Y )t+tp+···+tp
s−1

(1 + Y p)
tp

s−1
−t

p (1 + Y p2)
tp

s+1
−tp

p2 · · ·

Since tps = t,
F (t, Y )F (tp, Y ) · · ·F (tps−1

, Y ) = (1 + Y )Tr(t).

Then by substitution with Y = λ we have

(1 + λ)Tr(t) = θ(t)θ(tp) · · · θ(ts−1)

25



which gives εTr(t) = θ(t)θ(tp) · · · θ(ts−1). As ε is a p-th root of unity, we can reduce Tr(t)

modulo p, this gives us Tr(a). Therefore we obtain

εTr(a) = θ(t)θ(tp) · · · θ(ts−1).

Finally, the coefficients of θ(T ) belong to Zq[ε] since we already know F (T, λ) ∈ Zq[λ][[T ]]

and since Zq[λ] = Zq[ε].

In conclusion, we have constructed a p-adic power series θ(T ) =
∞∑

m=0

βmT
m with

ord(βm) ≥ m
p−1

such that εTr(a) = θ(t)θ(tp) · · · θ(ts−1) where t = [a] the Teichmüller
representative of a ∈ Fq.

4.2 Infinite matrices: Trace and determinant

Let L be a field and let n be an integer. Let u = (u1, . . . , un) ∈ Zn and X = (X1, . . . , Xn)

be n variables, Xu is defined by the monomial Xu1
1 . . . Xun

n . We say that u ≥ 0 if for all i,
ui ≥ 0 and put c(u) =

n∑
i=0

ui. Let E = L[[X]] the ring of formal series. For each element
G ∈ E, we define an endomorphism of E: f 7→ G.f again denoted G.

We define ψq, q ∈ N≥2 another endomorphism of E by

ψq

(∑
v≥0

avX
v
)
=

∑
v≥0

aqvX
v.

Let G =
∑
v≥0

gvX
v, the composition of ψq and G, ψq ◦ G, is again an endomorphism of

E. It is represented by the infinite matrix defined by (gqv−u)u,v. We have the following
properties:

• ψq ◦ ψq′ = ψqq′ (P1)
•G ◦ ψq = ψq ◦Gq where Gq(X) = G(Xq). (P2)

Now consider L = Ω and a set

R = {G =
∑
v≥0

gvX
v ∈ Ω[[X]]|(∃M > 0)(∀v ≥ 0), ord(gv) ≥Mc(v)}.

26



Let’s recall the definition of a trace of a matrix. Let V a finite dimensional vector
space over a field F , f a linear map V → V and {aij}1≤i,j≤n be the matrix of f over a
basis. Then the trace of this matrix is the sum of all the diagonal entries: Tr(f) =

n∑
i=1

aii.
In the following, we extend this for some infinite matrices which is important for us.

Proposition 4.2.1. Let G ∈ R and let ψ = ψq,G. Then Tr(ψs) converges and for all
integers s ≥ 1

(qs − 1)n Tr(ψs) =
∑

xqs−1=1

G(x)G(xq) · · ·G(xqs−1

),

where x = (x1, . . . , xn), xi ∈ Ω, and xqs−1 = 1 means that, xq
s−1

i = 1 for all 1 ≤ i ≤ n.

Proof. 1. Case s = 1. First, by the definition of a trace of matrix we have

Tr(ψ) =
∑
u

g(q−1)u

this series is convergent since G ∈ R.
On the other hand,

∑
xq−1=1

G(x) =
∑

xq−1=1,

∑
v≥0

gvx
v. We have

∑
vi≥0

xvi =

{
q − 1 if q − 1 divides vi
0 otherwise

for every i = 1, 2, . . . , n. Therefore,

∑
v≥0

xv =
∑
v≥0

n∏
i=1

xvii =
n∏

i=1

∑
vi≥0

xvii =

{
(q − 1)n if q − 1 divides vi for all i
0 otherwise.

Hence, ∑
xq−1=1

G(x) =
∑
v≥0

gv
∑

xq−1=1

xv = (q − 1)n
∑
u≥0

g(q−1)u = (q − 1)n Tr(ψ).

2. General case s > 1. Since ψs = ψq ◦G ◦ ψq ◦G ◦ · · · ◦ ψq ◦G︸ ︷︷ ︸
s times

= ψq◦ψq◦Gq◦G◦ψs−2
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and then we have by the properties (P1) and (P2) :

ψs = ψq2 ◦G.Gq ◦ ψs−2 = ψq2 ◦ ψq ◦ (G.Gq)qG ◦ ψs−3

= ψq3 ◦G.Gq.Gq2 ◦ ψs−3 = · · · = ψqs ◦G.Gq.Gq2 · · ·Gqs−1

= ψqs,G.Gq .Gq2 ···Gqs−1 .

So we get the result by substituting q by qs and G by the product G.Gq.Gq2 · · ·Gqs−1

in the first case.

Lemma 4.2.2. Let K be a field, V a finite dimensional K-vector space and ψ ∈ EndK(V ).
Then det(IdV −Tψ) = exp

(
−

∞∑
s=1

Tr(ψs)T
s

s

)
.

Proof. We may assume that K is algebraically closed and V = Kn. Then ψ is given by
a matrix M ∈Mn(K). So we have to show that log det(Idn −TM) = −

∞∑
s=1

Tr(M s)T
s

s
.

We know from linear algebra that when K = K, every matrix n×n is triangularizable:
we can arrange to find a basis in such a way that M is upper triangular. So we have

M =



λ1

λ2 *
. . .

0 . . .
λn


and Idn −TM =



(1− Tλ1)

(1− Tλ2) *
. . .

0 . . .
(1− Tλn)


So the determinant is det(Idn −TM) = (1− Tλ1)(1− Tλ2) · · · (1− Tλn).

Therefore, we have

log det(Idn −TM) =
n∑

i=1

log(1− Tλi) = −
n∑

i=1

∞∑
s=0

(Tλi)
s

s
.

In other hand, we recall that the product of upper triangular matrices is an upper trian-
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gular matrix so M s is an upper triangular matrix and we have Tr(M s) =
n∑

i=1

λsi . Hence

log det(Idn −TM) = −
∞∑
s=0

Tr(M s)
T s

s
.

Thus we get the result.

Lemma 4.2.3. Let G ∈ R and ψ = ψq,G. Then we have:

(i) det(IdE −Tψ) = exp
(
−

∞∑
i=1

Tr(ψs)T
s

s

)
,

(ii) The radius of convergence of the power series det(IdE −Tψ) is infinite.

Proof. (i) Follows from the previous lemma by passing to the limit.

(ii) By (i) we have det(Id−Tψ) = exp
(
−

∞∑
i=1

Tr(ψs)T
s

s

)
: a power series, written as

det(Id−Tψ) =
∞∑

m=0

αmT
m,

with αm = (−1)m
∑

sgn(σ)ψu1,σ(u1) (where σ runs along the permutations of the
ui).

We must prove that ord(αm)
m

→ ∞ when m→ ∞.

Since ψ ∈ R then we have ord(αm) ≥M(q−1) inf
( m∑

i=1

c(ui)
)

. Put dm = inf
( m∑

i=1

c(ui)
)

where the infimum is taken over all the u′s which are positive and distinct. So we
need to prove that dm

m
→ ∞ when m→ ∞.

We can arrange the sequence u′is in order to have c(ui) ≤ c(ui+1), so we obtain
dm =

m∑
i=1

c(ui) and also c(um) tends to ∞. Therefore dm → ∞, hence dm
m

→ ∞.
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4.3 Analytic expression of zeta function and proof of
theorem 1.1.8

Recall that we reduced the proof of theorem 1.1.8 to the case where V is an hypersurface
defined by one equation f(x) = 0 where f ∈ Fp[X1, · · · , Xn]. Arguing as in paragraph
1.2 and proceeding by induction on dimV , we may remove from V its intersections with
the coordinates hyperplanes, so we have

Ns = #V (Fp) = #{x ∈ Fn
p | f(x) = 0 and xp

s−1 = 1}

where as before, xps−1 = 1 means that xp
s−1

i = 1 for every 1 ≤ i ≤ n.

Let’s fix s ≥ 1. For all a ∈ Fps , let θs(a) = εTr(a) (with ε is a primitive p-th root of
unity). Let t = [a] be the Teichmüller representatives of a. We have seen in the examples
2.3.5 that θs is a non trivial character of Fps and so by using proposition 4.1.7 we have

θs(a) = θ(t)θ(tp) · · · θ(tps−1

). (4.1)

Proposition 4.3.1. Let ε be a primitive p-th root of unity. Then we have:

∑
x0∈F×

ps

θs(x0u) =

{
ps − 1 if u = 0

−1 otherwise.

Now we apply (4.3.1) by the change u = f(x):

∑
x0∈F×

ps

θs(x0f(x)) =

{
ps − 1 if f(x) = 0

−1 otherwise.

We sum this equality over all x ∈ (F×
ps)

n, and then we have:∑
x∈(F×

ps )
n,

∑
x0∈F×

ps

θs(x0f(x)) = psNs − (ps − 1)n. (4.2)

We express X0f(X) as a finite sum of monomials
∑
w∈I

awX
w in n + 1 variables X =

(X0, X1, · · ·Xn), where aw ∈ Fp.

30



Therefore the equality 4.2 becomes

psNs = (ps − 1)n +
∑
xps−1

∏
w∈I

θs(awx
w). (4.3)

Let Aw, y in Zp be the Teichmüller representatives of aw and x respectively. Using the
equalities (4.3) and (4.1) we get

psNs = (ps − 1)n +
∑
xps−1

∏
w∈I

s−1∏
j=0

θ(Awx
pjw). (4.4)

Put

G(X) =
∏
w∈I

θ(AwX
w), (4.5)

we obtain:

psNs = (ps − 1)n +
∑
xps−1

G(x)G(xp) · · ·G(xps−1

). (4.6)

By construction of θ we can see that θ(AwX
w) ∈ R so does G(X). Therefore we can

apply proposition 4.2.1 with q = p, we have:

psNs = (ps − 1)n + (ps − 1)n+1Tr(ψs) (4.7)

=
n∑

i=0

(−1)i
(
i

n

)
ps(n−i) +

n+1∑
i=0

(−1)i
(

i

n+ 1

)
ps(n+1−i) Tr(ψs). (4.8)

Put
∆(T ) = det(Id−Tψ) = exp

(
−

∞∑
i=1

Tr(ψs)
T s

s

)
.

Multiplying 4.7 by T s

s
and summing gives

ZV (pT ) =
n∏

i=0

(1− pn−iT )(−1)i+1( i
n)

n+1∏
i=0

∆(pn+1−iT )(−1)i+1( i
n+1).

As we have seen in proposition (4.2.3), ∆ converges in Ω. Hence ZV is meromorphic in
Ω. Thus by proposition (3.2.4) ZV is rational.
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