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Abstract

Let p a prime number, ¢ a power of p and V' a scheme of finite type over [F,. In this thesis
we present Dwork’s proof of the rationality of zeta function of V. It is based on methods
of p-adic analysis.
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Introduction

1.1 Objective

The study of zeta functions is very important, some applications of zeta functions are in
number theory, in algebraic geometry and also in physics.

There is a long list of zeta functions, most of them are analogous to the Riemann
zeta function: o 1
¢(s) = 2 s
where s is a complex variable. In this work we are precisely interested in zeta functions
which are analogous to Riemann zeta function.

Definition 1.1.1. Let K be a field. A scheme of finite type over K is a scheme with a
finite cover of spectra of finitely generated K-algebras.

Let p be a prime number. Fix a power ¢ of p. Let V be a scheme of finite type over
[F,. Denote by |V| the set of closed points of V.

Definition 1.1.2. If z € |V, the residue field K(z) is a finite extension of F,. The
degree of z is deg(z) := [C(z) : F].

Remark 1.1.3. A point of V' with values in [F« is a morphism of F,-schemes Spec(F ) —
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V. The data of such a point is equivalent to that of its image x € |V| and of the local
morphism of Fg-algebras Oy, — Fr i.e of a Fg-morphism K(z) = F .

The closed point = being fixed, there are deg(x) such points.

We denote by V(IF ) the set of F x-points of V.
Lemma 1.1.4. If d € Z > 0, there are finitely many closed points of degree d in V.
Proof. V is of finite type over I, : it can be covered by finitely many affine IF -schemes

of finite type so we can reduce to the case V' = Spec(A) where A ~F [X;,...,X,]/I for
some ideal 1.

The result follows from the fact that there are finitely many [F-morphisms A — F
(at most ¢?"). O

Definition 1.1.5. The zeta-function of V is

20(T) = T 1=y € 27

z€|V]|

(the product converges in Z[[T]] thanks to lemma 1.1.4).

00 K
Lemma 1.1.6. We have Zy (1) = exp ( 3 w)
k=1

Proof. Taking logarithm in Q|[[T]] we have:

cola 0 Tdeg(z)k o N(V
log(Zv(T)) = > —log(1 — T%=@)) = = 3~ — = > dc(z )
z€|V]| z€|V| k=1 d=1
where Ny(V') = > deg(z) = #V (Fa). O

z€|V|,deg(z)|d
Remark 1.1.7.

. 1
Zv(q ): H 1 — q—sdeg(ac)

where N(z) = #K(x).



The purpose of this work is to give the detailed proof of the following theorem:

Theorem 1.1.8. (Dwork, 1960 [1])
Zy(T) € Q(T).

Remark 1.1.9.

If V is of finite type over F, then it is also of finite type over I, so we may restrict to
varieties over IF,. Indeed, we have [K(z) : F,| = [K(z) : F,]d with d = [F, : F,], so

1 1
Zyyr, (T) = H 1 — TIK(@)Fy - H 1 — Tddeg(z)
ze|V| z€|V]

= Zyr,(TY.

If theorem 1.1.8 is known when ¢ = p, then we have Zyr (T%) € Q(T) N Z[[T%)] and
theorem 1.1.8 follows from next lemma.

Lemma 1.1.10. Q(T) N Z[[TY] c Q(TY).

Proof. Tt suffices to show that C(T) N Z[[T] € C(T%). Let 53 € C(T) N Z[[T] with

P,Q € C(T) and ged(P, Q) = 1. Let ¢ a primitive d-th root of unity. Then we have

P(T)  P(T) -
o) ~om — PN = PDRKET)

= P(T)|P(¢T) by Gauss’s theorem
= P(T) = P((T)

Therefore P(¢'T) = P(T), so P(T) = idilP(CiT) € C[TY, and similarly Q(T) €
i=0
C[T1). O

1.2 Reduction to the case where V' is a hypersurface

Lemma 1.2.1. If V =V U V" where V', V" are subschemes then

wn- 250
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Proof. Follows from the definition of Zy (7). O

Lemma 1.2.2. The theorem follows from the special case where V = V(f) C Afép: Zero
locus of f, for some polynomial f(X) € F,[Xy,..., X4

Proof. As seen above we may restrict to the case ¢ = p.

As V is of finite type over F,, we can write V' = U]_,V; where V;,...,V, are affine
subschemes. By the previous lemma, we have

2= JI  Z@-
Ic{1,...,r},I#0

where Vi = N[V, for all I C {1,...,r}; it is enough to show that [ # 0 — Zy,(T) €
Q(T).
As V7 is a subscheme of an affine scheme when I # (), it is separated: we may reduce

to the case where V' is separated. Then all the V7 are affine (cf [2], Chap 3.3, Prop 3.6):
we can restrict to the case where V is affine.

We can write V = V(I) C Af where [ = (fi,..., fn) C Fy[Xy,..., Xy] is an ideal.
Assume m > 1 and let V! = V((f1,..., fm)), V' =V (fm). Then V. = V' N V": by the

previous lemma, we have

Zy(T)y(T)
Zy(T) = ———————=
) = o (T
as V =V'UV"=V({(f1,..., fm-1fm)) an induction reduces to the case m = 1. O

The theorem 1.1.8 is the first part of the Weil conjectures which were proposed in
1949 by André Weil. We recall these conjectures:

Conjecture 1.2.3. (Weil conjectures,1949) Suppose that X is a non-singular n-dimensional
projective algebraic variety over the field F, with ¢ elements. The zeta function Zx(7')
of X is the same as above with 7" = ¢~* and denoted also Z(X,s). Then we have:

(1) (Rationality) Zy is a rational function. More precisely, Zy can be written as a
finite alternating product:

< Lyt PUT) - Py (T)
@UOB(T)( b Py(T) -+ Pon(T)



where each P,(T) € Z[T|. Moreover, Poy(T) =1 —T, P5,(T) = 1 — ¢"T and for
1<i<2n—1, P(T) =[[(1 - a;T) with a; € C.

J

(2) (Functional equation and Poincaré duality) The zeta function satisfies Z (X, n—
s) = +¢"T P Z(X, s) or equivalently Z(X,q "T~') = ¢ Zx(T) where X is the
Euler characteristic of X. In particular, for each ¢, the numbers ag,,_;;, ¥2p—i2, ...
equal the numbers ¢"a; 1,¢";2,... in some order.

(3) (Analogue of Riemann hypothesis) |o;;| = ¢"/? for 1 <i < 2n — 1 and for all
j. Thus all zeros of P;(T") are on the line of complex numbers s with real part i/2.

(4) (Betti numbers) If X is the reduction modulo p of a non-singular projective
variety Y defined over a number field embedded in the field of complex numbers,
then the degree of P; is the ¥ Betti number of the space of complex points of Y.

The functional equation was proved by Alexander Grothendieck (1965), and the analogue
of the Riemann hypothesis by Pierre Deligne (1974).

It is now worth illustrating this theorem with some examples:

Example 1.2.4.

1) Consider V' = Ay the n-dimensional affine space over F,.

The number of [Fys-rational points of V' is

N, = #V/(F,)
=#{r e A"z € F}

— qns

We have

oo

Zan(T) = exp (Z %7“)

S




2) Consider the n-dimensional projective space V' = ]P’{qu. We know that P* = PP~ 1JA",
SO V(Fqs) = Pn—l (Fqs) LJ An(Fqs)

By lemma 1.2.1 we have
Zpn(T) = Zpn—1(T) Zpn (T).

By induction, we obtain

1
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1.3 Plan of the work

e At the beginning we explained how we can reduce the zeta function for any algebraic
varieties into zeta functions defined on hypersurfaces. Then we shall see some
definitions and results about the terms in which we will use throughout this work.

e Secondly we introduce the criteria for rationality.

e Finally, we will see the construction of a power series that relates the character of
finite field and the p-adic expression of the zeta function. After that we complete
the proof of the theorem.



Backgrounds

This chapter is devoted to all definitions and properties of the mathematical objects that
we are going to use in the rest of this text.

2.1 Cyclotomic polynomials

Definition 2.1.1. Let F be a field and n € Z( prime to char(F'). A primitive n-th root
of 1 is an element ¢ € F such that (" =1and (" #1if 0 <m < n.

The n-th roots of unity in C are ¢ = ¢2™» where k € {0,...,n— 1}.

Definition 2.1.2. Let n be a positive integer, the n-th cyclotomic polynomial is
defined by

e,(X)= [ (x-em™).
1<k<n
ged(k,n)=1
Proposition 2.1.3. For all n € Z~q, we have:
(1) X" —1=]]®a(X)

dln

(ii) ®,(X) € Z[X].



2.2 Teichmiiller representatives

Teichmiiller representatives are induced from a canonical map lifting elements in EX into
roots of unity in characteristic 0.

Let @, be an algebraic closure of Q,.

The absolute value [.|, extends uniquely to @,: denote by C, the completion of Q,
with respect to |.|,. This is an algebraically closed field, and its residue field coincides
with that of Q,: it is isomorphic to F,,.

Proposition 2.2.1. There exists a unique map E l> Oc, such that:

(i) For all x € F, [z] maps to x in the residue field F,.
(i) (Vo,y €F,) [zy] = [z][y].

Proof. (i) Let z € F,,. There exists n € Z-g such that x is a root of P,(X) = X"~ X €
Z[X). If 7 € Og, lifts x then P,(Z) maps to 0 in F, and P, (&) = p"i?"~! — 1 maps
to —1 € F,". By Newton’s lemma, there exists a unique [z] € Oc, such that
P,([z]) = 0 and [z] maps to z in F,,.

(ii) Let y € F,. We may assume that y € F,.: we have Pn(_[y]) =0= [y]"" = [y] and
(27" = [2] so ([2][y])*" = [2][y]- As [2][y] maps to xy in I, we have [z][y] = [zy] by
unicity.

]

Definition 2.2.2. [z] is called the Teichmiiller representative of x.

Example 2.2.3.
(1) [0]=0

(2) If x € F then [z] is a (p" — 1)-th root of unity.

Remark 2.2.4.
e In general [x + y| is not equal to [z] + [y] i.e [.] is not a ring homomorphism.

o If n € Z-o, the elements {[z]},cr,. generate the unique unramified extension of
degree n of Q,.



2.3 Characters

Let €2 be an algebraically closed field of characteristic 0.

Definition 2.3.1. [3] A character on a group G is a group homomorphism y from G
to the multiplicative group 2*. The set of characters of G form an abelian group called
the dual of GG, denoted by G.

A character is trivial if x(g) = 1 for every g € G.

Let G be a finite abelian group. Set n = #G.
We have x(G) C p, :={z € QJz" = 1}.

Indeed, for every g € G, we have g™ = 1 therefore x(¢)" = x(¢") = x(1) = 1.

Lemma 2.3.2. Let H < G a subgroup of G and let G L H be the restriction map.
Then f is surjective.

Proof. Let y € PA[, let’s show that there exists n € G such that Ny = X

It suffices to show this in the case where G is generated by H and an element gy. If
g € G, there exist h € H and k € Z such that g = hg}.

If n exists then 7(g) = x(h)n(go)*, we need to construct n(gp).
Let 7 = min{k € Nyy|gk € H}.
It follows that {k € Zwo|gh € H} = rZ.

Yet
g € H = x(g0) = n(90) = n(g0)"

Let ¢ € £* such that (" = x(g§)-
Set

G L Cx
g = hgh — x(h)C*,

o 7 is well-defined:



hglg - h’gg/ = KWK = gé”_k, = k—k crZiek =k+rz for some z € Z.

Then hgk = W' gkt = h = h'(g})?, and so

x(h) = x(h")(x(g0))* = x(h')¢",

hence
X(h)CF = X ()¢ = x(h) M.

e 7nisa group homomorphism: let g; = hlggl, go = hgg]O” then 1(g1g2) = x(hi1ho)(*h2 =
X (h)x(ha)¢" ¢ = n(g1)n(g2).

Proposition 2.3.3. G is non canonically isomorphic to G.

Proof. G can be written as a finite product of cyclic groups: we may restrict to the case
where G = Z/nZ. Then we have an isomorphism

ftn, — G
¢ (k).
This result follows from the existence of a non canonical isomorphism p,, ~ Z/nZ. O
Consider the following map:
GG

g (evg PX x(g))-

It is straightforward to see that ev is a group homomorphism.
We have further the following lemma:

Theorem 2.3.4. ev is an isomorphism.
2.3.2

Proof. As #@ = #(A} = #G by proposition 2.3.3, it is enough to show that ev is injective.
Let g € G\ {e} with e the neutral element of G. Put H = (g) = Z/aZ. We have H >~ p,,



By lemma 2.3.3, there exists x € G such that x|<,~ = ¢ so that x(g) = ¢(g) # 1. ]

Example 2.3.5. Additive characters of finite fields Let p be a prime number and
k
q=p.

1) Let e € Q% is a primitive p-th root of unity. The map

x:F,—» Q"

are?

is a non trivial character of the additive group of F,,.

2) Recall that the trace map is defined by:

Tr:F, — F,

where ¢;(a) = a”', are all the automorphisms of the finite field extension F,/F,.

k—1

So Tr(a) =a+a” +a” +---+a” ' and

This implies that Tr(a) € F, so that the trace induces a map Tr : F, — F,.
Therefore we have the following composition which provides a non trivial character
of the additive group of F,:

F, = F, » Q~
a s Tr(a) — e™@,
2.4 Sylvester relation

Definition 2.4.1. Let R be a ring and A= (a@j)ogid‘gm S Mm-l—l(R)
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The determinant of A is det(A), equal to Y (—1)""a;; M;; where M;; is the determinant
i=0
of minor matrix (the determinant of A by deleting the row 7 and column j ): homogeneous

polynomial of degree m + 1 with respect to the whole variables a;; and of degree 1 with
respect to each variable a;;.

It can also be expressed by the Leibniz formula:

det(4) = 3 (sgn(a)ﬁaim)

c€Sh i=1

where sgn(o) is the signature of the permutation.

Lemma 2.4.2. (Sylvester relation,[4]) Let A € M,,+1(R) and let D = det(A). Set

Ai; = (=1 M,;. Let d be the determinant of the matrix obtained by removing the

extreme rows and columns. Then:

Dd = AO,OAm,m - AO,mAm,O' (33)

Proof. Without loss of generality, we may assume that R = Z[X, lo<ij<m and A =

(Xij)o<ij<m-

We prove this by considering D’ the determinant D’ of B = (b;j)o<; j<m defined by:
bOj = A0j7 bmj = Amj; and if i 7£ 0, bij =1ifi= j, 0 otherwise.

We have

Aoo  Aox Aoz - Aom
0 1 0o ... 0
D'=det(B)=| : . .. :
0 0 0 1 0
Amo Ami Amz . Anm

and it is equal to
AO,OAm,m - AO,mAmﬁ'

12



We have as before

ap.0 ap,1 e e ag,m
a0 ai e e a1,m
A=
Am-1,0 Om-11 -+ -+« Om—_1m
Qm,0 Am,1 e e Qm,m

Yet det(AB) = det(A) det(B) = DD’" and C' = com(A) = (A;j)o<ij<m and

D In+1 == ACt
We have
ap.o ap1 e e ag,m
a a a Aoo Ao Asp Amo
1,0 1,1 e e 1,m
. ) ) ) Aor A Agp Apa
Act = | : : o ‘
Um-1,0 Om-11 --- .- Qm—_1m ‘ ‘
AO,m Al,m A2,m Am,m
Qm,0 Am,1 e e Qm,m
By identification, we get for instance
aop0Aoo + a1 0A10+ -+ amoAmo =D and agpAlos + a10A11+ -+ amoAm1 = 0.
Therefore
D 0 e 0
1.0 ay1 el e a1,m
det(BA) =
Am-1,0 Gm-11 -+ v+ Gm_1m
0 .. ... 0 D
1.0 Q1,1 el e a1,m
=D?| L ... ... i |=D%
Am—-1,0 Gm-11 -+ v+ Qm—-1m
Therefore it follows that:
DD' = D?d.

13



Since DD" = D(Ap0Amm — AomAmo) and as D # 0 and R is a domain then we proved
Sylvester’s relation. ]
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Conditions for rationality

In the following we will see the criteria for rationality of power series.

3.1 Criteria from linear algebra

Consider a power series F'(T) = Y a;T" € K[[T]] where K is a field.
i=0

Let m,s be two integers with m,s > 0 and let A,,, be a matrix m x m given by

(as+i+j)0§i,j§m-

Denote by N, the determinant of the matrix A, ,,.

Proposition 3.1.1. The following are equivalent:

|3
-

where

(i) F is a rational function, i.e it can be written in the form F(T) =

P(T),Q(T) € K[T] with Q(T) # 0.

8
3

(ii) There exist two integers m > 0 and S > 0 such that whenever s > S we have
Ngm = 0.

Proof. (i)= (ii)

15
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T)
(1)

Write F(T) = £, So we get

o

N
Write Q(T) = > ¢;T" and put M = deg(P): the LHS (left hand side) is

1=0
o0 N
( CLi,NJerN,j)T .
=0  j=0

The equality (3.1) implies that for all ¢ > max(M, N) we have

N
Zai_Nﬂ-cN_j =0. (32)
j=0

Therefore we obtain a system of dependent linear equations. Take S = max(M — N +1,1)
and m = N. Put X = (¢y,cn-1,...,¢0): if s > 5, equations (3.2) imply that X A;,, = 0,
as X # 0 then N;,, = 0.

(i) = (i)
Suppose that there exist integers m > 0 and § such that N,,, = 0 when s > S,

choose m to be the minimal satisfying this property. We may assume that (a,),en is not
stationary, so that m > 0.

We first claim that Ng,,—1 # 0 for all s > S.
By contradiction, let S’ > S such that Ng ,,,—1 = 0.
Applying Sylvester’s relation to D = Ny, and
d = det(asi2+it+j)o<ij<m—2 = Nst2,m—2
Ago = det(ast24itj)o<ijcm—1 = Neyam—1

A = det(asyivi)o<ij<m—1 = Nem—1

Ao = det(ast14itj)o<ij<m—1 = Nst1,m—1 = Amo.

So we have

2
Ns7mNs+2,m—2 = Ns+2,m—1Ns7m—1 - (Ns—i—l,m—l) for m > 2.

16



Let s > 5.

Assume N ,,—1 = 0: we have Ny, = 0 thus Ny1,,—1 = 0. By induction, this implies
that Ng,,—1 = 0 for all s > S’. This contradicts the minimality of m.

As Ny, = 0 and N ,,—1 # 0, the rank of the matrix A, is m. This implies that the
K-vector space ker(As,,) = {X € K™ XA,,, = 0} has dimension 1. As Ny, 1 # 0
and Ngi1,,-1 7 0, this space coincides with the kernel of the matrix obtained by removing
the first or the last line. This shows that ker(As,,) = ker(Asi1.m)-

Let X = (¢m, ¢m—1, - - ., co) be a generator of ker(A,,,). If ¢,, = 0 then )N(ASJer_l =0
where X = (¢j_1,...,¢0) # 0 implying that Nsiy,,—1 = 0 which is a contradiction. So

we have ¢, # 0.

Put

m

QT) =Y aT"

i=0
What precedes shows that Q(T)F(T) € K[T], so F(T) is rational.

3.2 Analytic criteria

Now let 2 be an algebraically closed, complete valued field which contains Q,. The usual
p-adic absolute value on Q, extends into an absolute value |.[, : 2 — Rxo.

Definition 3.2.1. Let a power series F'(t) = > a;t' € Q[[t]].
i=0

We say that:
- Fis holomorphic in the disc |t|, < r if it converges absolutely in this disc.
- A meromorphic function is a quotient of two holomorphic functions.

Proposition 3.2.2. (Weirstrass Preparation Theorem) If F' is holomorphic in the disc
t|, <7 andifr’ <r then F' = P.h where P is a polynomial, h is an invertible holomorphic
power series in the disc |t|, <1’

17



The proof of this is more sophisticated since we have to use the Newton polygon so we
refer the idea of the proof in the chapter 4 of [5].

Lemma 3.2.3. Let z € Z. If |z|.|z], < 1 then z = 0.

Proof. Suppose = # 0, we have z = +[]¢"® then |z| = [[¢*® and |z|, = p~®).
q q

Thus |z|.|z], = [] ¢« > 1 which is a contradiction. O
a7p

Proposition 3.2.4. Let F(t) = Y_ A;t' € Z|[[t]] and let p a prime number.
i=0

Suppose there exist R and r € R with Rr > 1, such that F' is meromorphic in the disc
lt| < R of C and also in the disc [t|, < r of Q. Then F is rational.

Proof. Since by hypothesis, F' is meromorphic in the disc |¢|, < 7 then F' can be written

of the form F(t) = % where A(t) = Y a;t', B(t) =Y. Bit' € Q[[t]] are holomorphic in
i=0 i=0
the disc [t], <.

This implies that

B(t) = A(t)F(t). (3.2)

By using the proposition (3.2.2), we may reduce r a little and assume that A is a
polynomial and that ay = 1.

Reducing r and R a little, then we obtain the inequalities for s large enough:
|Bglp <r™° (3.3)
|As| < R%.
Now we are going to apply the criterion of proposition (3.1.1) for rationality.
We need to find m > 0 such that we have N, ,, = 0 for s large enough.
So let e be the degree of the polynomial A, since Rr > 1, choose m such that

RmHlpmtl=e — L is greater than 1.

18



By the equality (3.2), we have

Z Bltl = Z <Z Ge,in+j,€> tl
1=0

i=0  j=0
By identification for the monomial of degree s 4 e we have:

Bs+e = As+e + -+ aeflAerl + aeAs-

Recall
A Aspr oo Asrer Asie o0 A
N, = det As'—i—l As'+2 cee e As+‘m+1
Agim Asima1 - ... cee s Agiom

We can replace Agiit; by Bsiiqj for j > e, it doesn’t change the determinant Ny ,,.

By the relation (3.3) and as |A4|, < 1, we have
|Ns,m’p < T—(m—e-i—l)s
for s large enough Also we have for s large enough

’Nsm’ < R—(m+l)(s+2m).

Indeed, we make use of the inegality of Hadamard which says that | N, > < ] ( A%, ﬂ-) :
=0 \j=0

S

we have
|Ns,m|2 < H (ZR72(5+HJ)) — HR72(s+i)<1 + R2 4t R72m>
=0  j=0 i=0

-2 in:(s-i-i)
(1 4 R*Q T Rme)m+1R i=0

<
< (1 + R_2 44 R—2m)m+1R—(m+l)(2s+m)

m41 m(m+1)

then | Ny < ki R™"D where ky = (1+ R2+---+ R™2)"> R~ 2 ~ doesn’t depend
on s. Since |Ngm|.|Nsmlp < 1 for s large enough therefore by lemma (3.2.3) N, ,, =0. O

19



We will be building a power series that can factorize the additive character seen in the
example (2.3.5).

20



Rationality

4.1 Construction: factorization of additive charac-
ters of the finite field I,

Let © be the completion of the algebraic closure of the field of p-adic numbers, it is
algebraically closed. Let ¢ = A 4+ 1 € (2 be a primitive p-th root of unity.

Lemma 4.1.1. Let ¢ = A + 1 be a p-th root of unity as above. Then ord(\) = zﬁ'

Proof. Since (X —1)? = X? — 1+ p(X — 1)A[X] with A[X] € Z[X] of degree p — 1 then

D C
(X = 1P = T pAX) and A(1) = —1.

At X = ¢, we have \"! = pA(e) therefore (p — 1)ord(A\) > 1 and this implies that
p=2 )

ord(A) > 0. By the Taylor expansion of A we have: A(e) — A(1) = > %(5 —1)". So
i=1

ord(A(e)—A(1)) > ord(\) > 0, A(1) = —1 = ord(A(¢)) = 0. Hence ord(\) = -L.. O

p—1

Let a € F and t = [a] € Z, (where Z, is the ring of integers of the unramified extension
Q, of Q lifting F,/F,) its Teichmiiller representative: ¢ is a (¢ — 1)-th root of 1 lifting a.

Remark 4.1.2. The conjugates of the Teichmiiller representative of a are the conjugates
of t in €): these are the Teichmiiller representatives of the conjugates of a.

21



We will be looking for a power series with indeterminate variable T" whose value T =t
: Tr(a)
is e )

The easiest power series is (1+Y) -+ "' at YV = A this gives e77@. Unfortunately
this series is not convergent, we will have to find a suitable one.

Put H(T,Y) = (1+Y)T = f; (M)Y?so H(T,Y) € Q[[T,Y]] and

1=0

T —T T — TP
F(T,Y) = H(T,Y)H YP)H(——— Y"") ... (2.4)
p P’

P2 ,TP

—F(T,Y)=(1+Y)T(1+Y") 7 (1+Y")

infinite product of power series. It is easily seen that F(7,Y) is a convergent power

series in (Q[T))[[Y]] i.e we have F(T,Y) = > P, (T)Y™. In particular, we can evaluate
m=0
F(T,Y)at T =t and get F'(t,Y) € Q,[[Y]]

Remark 4.1.3. deg(P,,) < m for all m € N.

Lemma 4.1.4. (Dwork) Let f(X) = Z a; X" € Q,[X] with ag = 1. Let o be the Frobe-

nius automorphism of Q,. Then f(X ) E 14+ XZ,[X] if and only if (o f(XP))/(f(X))? €
14+ pXZ,X].

Proof. (=) Write F(X) =14 XG(X) with G(X) € Z,[[X]]: we have
oF(X?) =1+ XPoG(XP).
As o is congruent to the p-th power map modulo p, we have
cF(X?)=G(X)? mod pZ,[[X]]

so that o F(X?) = 1+ XPG(X?) mod pXZ,[[X]]. As F(X)» = 1+ GX))P =1+
XPG(X?) mod pXZ,[[X]], we have

oF(X?)=F(X)? mod pXZ,[[X]]
oF(X?)
F(X)r

ie =1 mod pXZ,[[X]] since F(X) € 1+ XZ[[X]] C Z,[[X]]*.

Whence Ui((X)p) €1+ pXZ,[[X]].
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(<) Write % = > b; X" we have by = 1 and b; € pZ, if i > 0.
i=0

We prove by induction on n that a; € Z, for all i € {0,...,n}. This holds for n = 0
since ag = 1 by hypothesis: assume n > 0. We have o F'(X?) = F(X)? Y b; X"
i=0

e 2 o(a)XP = <§; aka>p(g biXi)

) ) _ |0ifpin
The coefficient of X™ in the LHS is '
o (anyp) if pin.

The coefficient of X™ in the RHS is equal to that of
(ZakX ) (Zbg{)
k=0 i=0

i.e to that of (( i aka)p+panX”> ( i biXi> i.e to pa,, plus to that of ((nzl aka)p> <1+
k=0 i=0 k=0

n n—1
Z1biX Z) The latter belongs to Z, and it is congruent to the coefficient of kz ah X
i= =0
modulo p which is equal to 0 if p{ n and a’ Ip if p|n.

Finally we have

0 =pa, mod pZjifptn
o(anp) = pay + afl/p mod pZ, if p|n.

As o(ansp) = @y, mod pZ, when pln we have pa, € pZ, in all cases i.e F(X) € 1+

X7Z,[1X]]. =

Similarly:

Lemma 4.1.5. Let f(T\Y) € Q,[[T,Y]] such that f(0,0) = 1. Then f(7.Y) € 1+

TZ,([T, Y]] if and only if “HE550) € 14 pTZ[[T, Y]] + pYZ, ([T, Y]]

Lemma 4.1.6. F(T,Y) € Z,[[T,Y]].
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Proof. Let’s computes F(T?,Y?)/F(T,Y)P:

3 2
TP2 _TP TP TP

F(T?PY?) = (1+Y)) "1 +Y") 5 (1+Y") » ...,

and

2
o . TP TP

FTYY=(1+Y)?+y))" T +y")y 5 ..,

therefore we have
F(TP,YP)/F(T,Y) = (1+YP)T /(1 +Y)".

Yet by the lemma (4.1.4) applied to F(Y) = 1+Y, the series (1+Y?)/(14Y)? is of the
form 14 pG where G is a power series without constant term where the coefficients is in
Zg. So F(TP.YP)/F(T,Y)P is of the same form.

It follows from the lemma (4.1.4) that F(T,Y) € Z,[[Y]]. O

Tr(a)

Proposition 4.1.7. For every s > 1, the additive character € can be written as

)7

s—1

O()0(t?) - - Ot

where t is the Teichmiiller representative of a and where 0(T) = > 5, T™ € Q,(e)[[1]]
m=0
satisfies ord(8,) = %7 for all m € N.

Proof. Recall that

70’ _7p

(1+Y7) #? ---:ipm(T)Ym

TP-T
) P

F(T,Y)=(1+Y)"(1+Y?
where P,,(T) € Q,[X] has degree > m. Thus
F(T,Y) =) an(Y)T"
m=0

where «,,(Y) is a formal series whose first term has degree > m, with coefficients in Z,.
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Tpn _Tpn71

Indeed, each term in the binomial series (1 + Y?")™ »~

Tpn . Tpn—l Tpn o Tpn—l Tpn . Tpn—l ank
( ) “1) (k1)
has a degree < p"k on T', p"k exponent of Y.
We have A =& — 1 and ord(\) = -
P

Set: .
O(T)=F(T,\)=>_ BT
m=0

with B, = o, () (this series converges as ord(\) > 0 by lemma 4.1.1).
We have as said above a,,(Y) starts with Y so

m

ord(f,,) > ord(\™) = T (2.6)
p R

Therefore the series § converges in the disc ord(7") > p_T11~

Recall that

Te(t) = t+t" +- -+t €,
We have
1+ V)0 = P, Y)F@,Y) - F(7Y).
Indeed,
1 tP—t tpz,tp
FAY)F(,Y)---F{t" ) Y)=(1+Y)1+Y?) 7 - (1+YV)"(14+Y?) » .-
1 tPS,tP571
1+Y)" (14+Y?)
ps—l_t tps+1 _p

— (L4 YT Yy ey

Since t° = t,
s—1

F(tv Y)F<tp’ Y) e F(tp 7Y) = (1 + Y)Tr(t)'

Then by substitution with Y = X we have

(1+ N0 = g@)a(t?) - 6(tY)
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which gives e = 9(¢)0(t?) - - - O(t*~1). As ¢ is a p-th root of unity, we can reduce Tr(t)
modulo p, this gives us Tr(a). Therefore we obtain

1@ — 9()0(t?) - - - H(t°7Y).

Finally, the coefficients of 6(T") belong to Z,[¢] since we already know F(T, \) € Z,[\|[[T]]
and since Z,[A| = Z,[e].

In conclusion, we have constructed a p-adic power series 0(T) = >  p,T™ with
m=0

ord(Bm) > -7 such that eT@ = 9(t)f(tP)---0(¢*~) where t = [a] the Teichmiiller

representative of a € IF,. ]

4.2 Infinite matrices: Trace and determinant

Let L be a field and let n be an integer. Let u = (uy,...,u,) € Z" and X = (Xy,...,X,)
be n variables, X" is defined by the monomial Xi" ... X}". We say that u > 0 if for all ¢,

u; > 0 and put c¢(u) = > u;. Let E = L[[X]] the ring of formal series. For each element
i=0
G € E, we define an endomorphism of E: f — G.f again denoted G.

We define 1), ¢ € N>, another endomorphism of £ by

1/Jq<ZCLUXv> = Zaqu”.

v>0 v>0
Let G = ) ¢, X", the composition of ¢, and G, ¢, o G, is again an endomorphism of

v>0
E. 1t is represented by the infinite matrix defined by (ggy—u)u.- We have the following

properties:

® g 0y = Yyq (P1)
e Go,=1,0G, where G,(X) = G(X?). ()

Now consider L = () and a set

R={G=) g.X"€QX]]|(3M > 0)(Vv > 0),0rd(g,) > Me(v)}.

v>0
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Let’s recall the definition of a trace of a matrix. Let V a finite dimensional vector
space over a field F, f a linear map V' — V and {a;; }1<i j<n be the matrix of f over a

basis. Then the trace of this matrix is the sum of all the diagonal entries: Tr(f) = > a;;.

In the following, we extend this for some infinite matrices which is important for us.

Proposition 4.2.1. Let G € R and let ¢ = 1, . Then Tr(¢*) converges and for all
integers s > 1

(¢ —1)" = > Gl ) G(a”),

xa®—1=1

where © = (T1,...,%,), ; € Q, and 27~ = 1 means that, xg'gfl =1 foralll <i<n.

Proof. 1. Case s = 1. First, by the definition of a trace of matrix we have
Tr(¥) =Y gg-1yu

this series is convergent since G € R.
On the other hand, > G(z)= > > g,z". We have

xd—1=1 zq—lzl,vZO

Z . {q—llfq—ldlwdes v;
x'L_

0 otherwise

v; >0
for every i = 1,2,...,n. Therefore,
- o w_ Ja- )™ if ¢ — 1 divides v; for all
Zx _an HZ a {0 otherwise.
v>0 v>0 1=1 i=1 v;>0
Hence,

Y G@) =) g0 Y. " =(g- D)"Y gyg-ne=(g—1)"Tr(x)).

rd—1=1 v>0 rd—1=1 u>0

2. General case s > 1. Since 1* = ¢),0 Gop,0G o+ 01, 0 G = 1h,01,0G,0Gorh*2

vV
s times
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and then we have by the properties (P;) and (1) :
U =12 0 GGy o "™ = P2 0y 0 (G.Gy)yG 0 )"
=13 0G.GpGpr ot = = 1h 0 G.Gy.Gp - Gyom

= Vg2.G.GyG o Go

So we get the result by substituting ¢ by ¢° and G by the product G.G ;.G - - - G2
in the first case.

]

Lemma 4.2.2. Let K be a field, V' a finite dimensional K-vector space and ¢ € Endg (V).
Then det(Idy —T%) = exp ( 'y Tr(ws)T;).
s=1

Proof. We may assume that K is algebraically closed and V' = K™. Then 1 is given by
a matrix M € M,(K). So we have to show that logdet(Id, —TM) = — % Tr(M*)L.
s=1

We know from linear algebra that when K = K, every matrix n x n is triangularizable:

we can arrange to find a basis in such a way that M is upper triangular. So we have

Ay (1-T\)

Ao * (1—="TXs) *

and Id, -TM =

0o - 0

So the determinant is det(Id,, =TM) = (1 —TA)(1 =TXg)--- (1 = T\,).

Therefore, we have

n e} s

log det(Id,, —T'M) Zlog (1-TX\) ZZ(

i=1 s=0

In other hand, we recall that the product of upper triangular matrices is an upper trian-
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gular matrix so M*® is an upper triangular matrix and we have Tr(M?®) = >~ 7. Hence

log det(Id,, —T'M) Z Tr( MS
Thus we get the result. O

Lemma 4.2.3. Let G € R and ¢ = v, . Then we have:

(i) det(Idp —T4) = exp ( - i Tr(w)%") ,

(ii) The radius of convergence of the power series det(Idg —7'9) is infinite.

Proof. (i) Follows from the previous lemma by passing to the limit.
(ii) By (i) we have det(Id —T%) = exp < - > Tr(@[ﬂ%): a power series, written as

det(Id —T%) = Z@me

with oy, = (=1)" > sgn(0)Yu, o) (Where o runs along the permutations of the

ord(am)

We must prove that — 0o when m — oo.

Since ¢ € R then we have ord(«,,) > M (g—1) inf ( > c(ul)> Put d,, = inf ( > e(uy;)
i=1 =1
where the infimum is taken over all the u’'s which are positive and distinct. So we

need to prove that dﬁ — 00 when m — oo.
We can arrange the sequence us in order to have c(u;) < c(u;s1), so we obtain
m

d = Y ¢(u;) and also c(uy,,) tends to co. Therefore d,,, — 0o, hence %= — oo.
=1
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4.3 Analytic expression of zeta function and proof of
theorem 1.1.8

Recall that we reduced the proof of theorem 1.1.8 to the case where V' is an hypersurface
defined by one equation f(x) = 0 where f € F,[X;,---,X,]. Arguing as in paragraph
1.2 and proceeding by induction on dim V', we may remove from V' its intersections with
the coordinates hyperplanes, so we have

N, = #V(F,) = #{z € F}| f(z) =0and 2" ' =1}

where as before, zP°~! = 1 means that xfsil =1 for every 1 <i < n.

Let’s fix s > 1. For all a € Fps, let 6,(a) = e™@ (with ¢ is a primitive p-th root of
unity). Let ¢t = [a] be the Teichmiiller representatives of a. We have seen in the examples
2.3.5 that 6, is a non trivial character of F,s and so by using proposition 4.1.7 we have

s—1

0,(a) = O)O(L?) - - 0(t" ). (4.1)

Proposition 4.3.1. Let € be a primitive p-th root of unity. Then we have:

Z Os(xou) = {

pP—1ifu=0

—1 otherwise.

Now we apply (4.3.1) by the change u = f(x):

S (w0 f(x)) =

o EF;:S

{ps—liff(x):(]

—1 otherwise.

We sum this equality over all z € (F,:)", and then we have:

S S buaof @) = pN, — (5 — 1) (4.2)

:L‘E(]F;s)"7 moeF:5

We express Xof(X) as a finite sum of monomials > a, X" in n + 1 variables X =
wel

(Xo, X1, -+ X,,), where a,, € F,,.
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Therefore the equality 4.2 becomes

pP’Ne=(p"—1)"+ Z H 0s(awz"). (4.3)

zp®—1 wel

Let A,, y in Z, be the Teichmiiller representatives of a,, and x respectively. Using the
equalities (4.3) and (4.1) we get

p’Ny=(p®—1)" + Z H ﬁ@(wapjw). (4.4)

zp°—1wel 5=0

Put
=[] o4.x"), (4.5)
we obtain:
PNo=@p = 1)"+ Y G(2)G(a")- -G, (4.6)

By construction of 6 we can see that 0(A,X") € R so does G(X). Therefore we can
apply proposition 4.2.1 with ¢ = p, we have:

P’Ne=(p" = 1)" + (p° = 1)"* Tr(y”) (4.7)
-y (n) SR (n+ 1)p8<“+“> ). (48)

Put
A(T) = det(Id —T%) —exp( ZTr )

Multiplying 4.7 by % and summing gives

n ) o n+l ' . )
Zy(pT) = H(l - pn_iT)(_l)Hl(") H A(p"+1_’T)(_1) +1(n+1),
1=0 i=0

As we have seen in proposition (4.2.3), A converges in €. Hence Zy is meromorphic in
2. Thus by proposition (3.2.4) Zy is rational.
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