Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Gastaldello, Maria Elena (2018) Integrated benthic foraminiferal and calcareous nannofossil records from IODP site U1506: the biogenic bloom. [Magistrali biennali]

Full text disponibile come:

PDF (Tesi magistrale)


This Master thesis is a biostratigraphic, biochronologic and paleoenvironmental study of a Miocene-Pliocene section retrieved at Site U1506, drilled during IODP Exp. 371 (Tasman Sea, southwest Pacific). The studied succession spans from 233.50 to 81.75 m CSF-A (Core depth below Sea Floor-A). During the latest Miocene-early Pliocene, increases in the mass accumulation rate (MAR) of biogenic components, major changes in planktic and benthic fauna assemblages, and marked decreases in sedimentary redox conditions have been documented both in the Indian and Pacific Ocean beneath upwelling zones. These conditions are referred to as the “biogenic bloom”. Previous works have suggested that this paleoceanographic event is characterized by a prominent increase in primary productivity between ca. 9.0 and 3.5 Ma. A first result of this thesis is the biostratigraphic classification of the study succession based on calcareous nannofossil biostratigraphy using appearance and disappearance biohorizons of a number of taxa proposed in standard (Martini, 1971; Okada and Bukry, 1980) and alternative biozonations (Backman et al., 2012). According to the biostratigraphic zonation available, the study section extends from Zone NN10 to Zone NN13 (Martini, 1971), from Subzone CN8b to Subzone CN10c (Okada and Bukry, 1980) and from Zone CNM15 to Zone CNPL2 (Backman et al., 2012). From the chronostratigraphic point of view, the analysed section thus spans from the Tortonian (late Miocene) to the Zanclean (early Pliocene). Based on calcareous nannofossil biochronology an integrated age model has been constructed which allows to estimate the time interval spanned from the Base of the section (8.45 Ma) to the Top of the section (4.53 Ma) as well as the sedimentation rates along the section. Moreover, the chronological framework available for Site U1506 also permits to evaluate the precise timing and duration of the biogenic bloom that is from 7.28 to 6.50 Ma (0.78 Myr). This datum consistently shortens the previous estimates for the duration of the event (5.5 Myr). Benthic foraminifera have been used to reconstruct the paleoenvironmental conditions at the sea floor in terms of nutrient availability, trophic conditions and oxygen concentrations along the study section, based on the different paleoecological affinity of the taxa present in the assemblages. The succession has been divided into three intervals based on changes observed in the foraminiferal assemblages and detrended correspondence analysis (DCA). Taxa typical of high nutrient influx and low oxygen conditions, indicative of high productivity environmental conditions, were observed in Interval 1 and are interpreted to document the biogenic bloom between 192.91 and 168.00 m CSF-A. Instead, Interval 2 and 3 are suggestive of more oligotrophic environmental conditions likely characterized by a higher oxygen availability. The next step in order to better understand this event will be to integrate paleontological and geochemical (δ13C) data in order to correlate paleontological changes with modifications in the carbon cycle.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Subjects:Area 04 - Scienze della terra > GEO/01 Paleontologia e paleoecologia
Codice ID:63044
Relatore:Agnini, Claudia
Correlatore:Alegret, Laia
Data della tesi:26 September 2018
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., Rio, D., 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low to middle latitudes. Newsletters on Stratigraphy, vol. 47 (2), pp.131-181. Cerca con Google

Arnold, E., Leinen, M., King, J., 1995. Paleoenvironmental variation based on the mineralogy and rock-magnetic properties of sediment from sites 885 and 886. Proc. ODP, Sci. Results 145, 231–245. Cerca con Google

Arreguín-Rodríguez, G. J., Alegret, L., Thomas, E., 2016. Late Paleocene – middle Eocene benthic foraminifera on a Pacific Seamount (Allison Guyot, ODP Site 865): Greenhouse Climate and superimposed hyperthermal events. Paleoceanography and Paleoclimatology, doi:10.1002/2015PA002837. Cerca con Google

Backman, J., Raffi, I., 1997. Calibration of Miocene nannofossil events to orbitally tuned cyclostratigraphies from Ceara Rise. Proc. ODP Sci. Results 154, 83–99. Cerca con Google

Backman, J., Raffi, I., Rio, D., Fornaciari, E., & Pälike, H., 2012. Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy, 45(3), 221–244. doi:10.1127/0078-0421/2012/0022. Cerca con Google

Berger, W.H., Leckie, R.M., Janecek, T.R., Stax, R., Takayama, T., 1993. Neogene carbonate sedimentation on Ontong Java Plateau: highlights and open questions. Proc. ODP, Sci. Results 130, 711–744. Cerca con Google

Berger, W.H., Stax, R., 1994. Neogene carbonate stratigraphy of Ontong Java Plateau (Western Equatorial Pacific): three unexpected findings. Terra Nova 6, 520–534. Cerca con Google

Berggren, W.A., and J.A. Van Couvering. 1978. Biochronology. In G.V. Cohee, M.F. Glaessner, and H.D. Hedberg (editors), Contributions to the geologic time scale: 39–55. Tulsa, OK: American Association of Petroleum Geologists. Cerca con Google

Berggren, W.A., Miller, K.G., 1989. Cenozoic bathyal and abyssal calcareous benthic foraminiferal zonation. Micropaleontology 35, 308-320. Cerca con Google

Berggren, W.A., Kent, D.V., Swisher, C.C.III, Aubry, M.-P., 1995. A revised Cenozoic geochronology and chronostratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M.-P., Hardenbol, J., Geochronology, time scales and global stratigraphic correlation: A unified temporal framework for an historical geology. Spec. Publ. Soc. Econ. Paleontol. Mineral., 54, 29–212. Cerca con Google

Bernhard, J.M., 1986. Characteristic assemblages and morphologies of benthic foraminifera from anoxic, organic-rich deposits: Jurassic through Holocene. J. Foraminifer. Res. 16, 207-215. Cerca con Google

Bijl, P.K., Schouten, S., Sluijs, A., Reichart, G.J., Zachos, J.C., and Brinkhuis, H., 2009. Early Paleogene temperature evolution of the southwest Pacific Ocean. Nature, 461 (7265):776-779. doi:10.1038/nature08399. Cerca con Google

Brady, H. B. (1884). Report on the Foraminifera dredged by H.M.S. Challenger during the Years 1873-1876. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–76. Zoology. 9 (part 22): ixxi, 1-814; pl. 1-115., available online at Vai! Cerca con Google

Brewer, P. G., 1990. Productivity of the Ocean. Present and Past. W. H. Berger, V. S. Smetacek, and G. Wefer, Eds. Wiley-Interscience, New York, 1989. Xviii, 470 pp., illus. $146. Life Sciences Research Reports, vol. 44. From a workshop, Berlin, F.R.G., April 1988. Science, 247(4944), 865–865. doi:10.1126/science.247.4944.865. Cerca con Google

Broecker, W.S., Peng, T. H., 1982. Tracers in the Sea. Eldigio Press, Palisades, NY Brummer, G.J.A., Van Eijden, A.J.M., 1992. ‘‘Blue-ocean’’ paleoproductivity estimates from pelagic carbonate mass accumulation rates. Mar. Micropaleontol. 19, 99–117. Cerca con Google

Corliss, B.H., 1985. Microhabitats of benthic foraminifera within deep-sea sediments. Nature 314, 435-438. Cerca con Google

Corliss, B.H., Chen, C., 1988. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology 16, 716-719. Cerca con Google

Corliss, B.H., 1991. Morphology and microhabitat preferences of benthic foraminifera from the northeast Atlantic Ocean. Mar. Micropalontol. 17, 195-236. Cerca con Google

Coxall, H.K., Pearson, P.N., 2007. The Eocene-Oligocene transition. Williams, Mark, Haywood, A. M., Gregory, J. and Schmidt, D. N. (Eds). Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, Micropaleontology Society Special Publication, London, Geological Society, pp. 351-387. Cerca con Google

Delaney, M.L., Filippelli, G.M., 1994. An apparent contradiction in the role of phosphorus in Cenozoic chemical mass balances for the world ocean. Paleoceanography 9, 513-527. Cerca con Google

Dickens, G.R., Owen, R.M., 1994. Late Miocene–Early Pliocene manganese redirection in the central Indian Ocean: expansion of the intermediate water oxygen minimum zone. Paleoceanography 9, 169–181. Cerca con Google

Dickens, G.R., Owen, R.M., 1996. Sediment geochemical eviŽ. dence for an Early–Middle Gilbert Early Pliocene productivity peak in the North Pacific Red Clay Province. Marine Micropaleontol. 27, 107–120. Cerca con Google

Dickens, G. R., Owen, R. M., 1999. The Latest Miocene-Early Pliocene biogenic bloom: a revised Indian Ocean perspective. Marine Geology 161 (1999) 75-91. Cerca con Google

Dobson, D.M., Dickens, G.R., Rea, D.K., 1997. Terrigenous sedimentation at Ceara Rise. Proc. ODP, Sci. Results 154, 465–473. Cerca con Google

Douglas, P.M.J., Affek, H.P., Ivany, L.C., Houben, A.J.P., Sijp, W.P., Sluijs, A., Schouten, S., and Pagani, M., 2014. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. Proceedings of the National Academy of Science of the United States of America, 111(18):6582-6587. doi:10.1073/pnas.1321441111. Cerca con Google

Eade, J. V., 1967. New Zealand recent Foraminifera of the families Islandiellidae and Cassidulinidae. New Zealand Journal of Marine and Freshwater Research, 1:4, 421-454, doi:10.1080/00288330.1967.9515217. Cerca con Google

Falkowski, P.G., Katz, M.E., Knoll, A.K., Quigg, A., Raven, J.A., Schofield, O. & Taylor, F.J.R. 2004. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360. Cerca con Google

Farrell, J.W., Janecek, T.R., 1991. Late Neogene paleoceanography and paleoclimatology of the northeast Indian Ocean site 758. Proc. ODP, Sci. Results 121, 297–355. Cerca con Google

Farrell, J.W., Ra, I., Janecek, T.R., Murray, D.W., Levitan, M., Delaney, M., Dadey, K.A., Emeis, K.-C., Lyle, M., Flores, J.-A., Hovan, S., 1995. Late Neogene sedimentation patterns in the eastern equatorial Pacific. Proc. ODP Sci. Res. 138, 717-756. Cerca con Google

Filippelli, G.M., 1997. Intensification of the Asian monsoon and a chemical weathering event in the Late Miocene–Early Pliocene: implications for Late Neogene climate change. Geology 25, 27–30. Cerca con Google

Fisher, R. A., Corbet, A. S., & Williams, C. B., 1943. The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population. The Journal of Animal Ecology, 12(1), 42. doi:10.2307/1411. Cerca con Google

Fontanier, C., Jorissen, F.J., Licari, L., Alexandre, A., Anschutz, P., Carbonel, P., 2002. Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition and microhabitats. Deep-Sea Res. I 49, 751-785. Cerca con Google

Gooday, A.J., Turley, C.M., 1990. Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Philos. Trans. R. Soc. Lond. 331, 119-138. Cerca con Google

Gooday, A.J., 2003. Benthic foraminifera (Protista) as tools in deep-water paleoceanography: a review of environmental influences on faunal characteristic. Adv. Mar. Biol. 46, 1-90. Cerca con Google

Gornitz V., 2008. Encyclopedia of Paleoclimatology and Ancient Environments.Springer Science & Business Media, Oct 31, 2008 – Science. Cerca con Google

Grant, K. M., & Dickens, G. R., 2002. Coupled productivity and carbon isotope records in the southwest Pacific Ocean during the late Miocene–early Pliocene biogenic bloom. Palaeogeography, Palaeoclimatology, Palaeoecology, 187(1-2), 61–82. doi:10.1016/s0031-0182(02)00508-4. Cerca con Google

Hammer, O., Harper, D.A.T., Ryan, P.D., 2001. Past: paleontological statistics software package for education and data analysis. Paleontologia Electronica. Cerca con Google

Hays, J.D., Opdyke, N.D., 1967. Antarctic radiolaria, magnetic reversals and climate changes. Science 158, 1001–1011. Cerca con Google

Hayward B. W., Buzas, M. A., 1979. Taxonomy and Paleoecology of Early Miocene Benthic Foraminifera of Northern New Zealand and the North Tasman Sea. Smithsonian Contributions to Paleontology, no. 36. Cerca con Google

Hayward, B. W., Sabaa, A., & Grenfell, H. R., 2004. Benthic foraminifera and the late Quaternary (last 150 ka) paleoceanographic and sedimentary history of the Bounty Trough, east of New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 211(1-2), 59–93. doi:10.1016/j.palaeo.2004.04.007. Cerca con Google

Hayward, B. W., Grenfell, H. R., Sabaa, A. T., Neil, H. L., Buzas, M.A., 2010. Recent New Zealand deep-water benthic foraminifera: Taxonomy, ecology distribution, biogeography, and use in paleoenvironmental assessment. GNS Science monograph 26 Cerca con Google

Hayward, B. W., Sabaa, A. T., Grenfell, H. R., Neil, H. L., Bostock, H., 2013. Ecological distribution of recent deep-water foraminifera around New Zealand. Journal of Foraminiferal Research, v. 43, no. 4, p. 415-442. Cerca con Google

Hermelin, J. O. R., 1989. Pliocene benthic foraminifera from the ontong-java plateau (western equatorial pacific ocean): faunal response to changing paleoenvironment. Cushman Foundation for foraminiferal research, special publication no. 26. Cerca con Google

Hermelin, J.O.R., 1992. Variations in the benthic foraminiferal fauna of the Arabian Sea: a response to changes in upwelling intensity? In: Summerhayes, C.P., Prell, W.L., Emeis, K.-C. Eds., Upwelling Systems: Evolution since the Early Miocene. Geol. Soc. Spec. Publ., London, 64, 151–166. Cerca con Google

Hermoyian, C.S., Owen, R.M., 2001. Late Miocene-early Pliocene biogenic bloom: Evidence from low-productivity regions of the Indian and Atlantic Oceans. Paleoceanography 16, 95-100. Cerca con Google

Hodell, D.A., Benson, R.H., Kent, D.V., Boersma, A., RacicEl Bied, K., 1994. Magnetostratigraphic, biostratigraphic, and stable isotope stratigraphy of an upper Miocene drill core from the Sale Briqueterie (Northwestern Morocco): A high resolution chronology for the Messinian stage. Paleoceanography 9, 835-855. Cerca con Google

Holbourn, A., Henderson, A. S., MacLeod, N., 2013. Atlas of Benthic Foraminifera. Wiley-Blackwell, Natural History Museum. Cerca con Google

Jones, R.W., Charnock, M.A., 1985. ‘Morphogroups’ of agglutinated foraminifera: Their life positions and feeding habits and potential applicability in (paleo)ecological studies. Rev. Paleobiol. 4, 311-320. Cerca con Google

Hollis, C. J., Handley, L., Crouch, E. M., Morgans, H. E. G., Baker, J. A., Creech, J., Collins, K.S., Gibbs, S.J., Huber, M., Schouten, S., Zachos, J.C.,and Pancost, R. D., 2009. Tropical sea temperatures in the high-latitude South Pacific during the Eocene. Geology, 37(2), 99–102. doi:10.1130/g25200a.1. Cerca con Google

Hollis, C.J., Taylor, K.W.R., Handley, L., Pancost, R.D., Huber, M., Creech, J.B., Hines, B.R., Crouch, E.M., Morgans, H.E.G., Crampton, J.S., Gibbs, S., Pearson, P.N., and Zachos, J.C., 2012. Early Paleogene temperature history of the Southwest Pacific Ocean: reconciling proxies and models. Earth and Planetary Science Letters, 349-350:53-66. doi:10.1016/j.epsl.2012.06.024. Cerca con Google

Jorissen, F.J., Stigter, H.C., Widmark, J.G.V., 1995. A conceptual model explaining benthic foraminiferal microhabitats. Mar. Micropaleontol. 26, 3-15. Cerca con Google

Kaminski, M.A., Gradstein, F.M., 2005. Atlas of Paleogene Cosmopolitan Deepwater Agglutinated Foraminifera, ISBN – 83-912385-X, The Grzybowski Foundation. Cerca con Google

Kennett, J.P., Von der Borch, C.C., 1986. Southwest Pacific Cenozoic paleoceanography. Initial Rep., DSDP 90, 1493– 1517. Cerca con Google

Koizumi, I., 1986. Pliocene and Pleistocene diatom levels related with paleoceanography in the Northwest Pacific. Mar. Micropaleontol. 10, 309–325. Cerca con Google

Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J., Wilson, D.S., 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature 400, 652-655. Cerca con Google

Kuhnt, W., Moullade, M., & Kaminski, M. A., 1996. Ecological structuring and evolution of deep sea agglutinated foraminifera — a review. Revue de Micropaléontologie, 39(4), 271–281. doi:10.1016/s0035-1598(96)90119-1. Cerca con Google

Kuhnt, W., Moullade, M., Kaminski, M.A., 1998. Upper Cretaceous, K/T boundary, and Paleocene agglutinated foraminifers from Hole 959D (Côte d'Ivoire-Ghana Transform Margin). Proceedings of the Ocean Drilling Program: Scientific Results 159. doi:10.2973/ Cerca con Google

Leinen, M., 1979. Biogenic silica accumulation in the central equatorial Pacific and its implications for Cenozoic paleoceanography. Geol. Soc. Am. Bull. 90, 1310–1376. Cerca con Google

Lisiecki, L.E., Raymo, M.E., 2005. A Plio–Pleistocene stack of 57 globally distributed benthic d180 records. Paleoceanography 20, PA1003. doi:10.1029/2004PA001 071 Cerca con Google

Lohmann, G.P., 1978. Abyssal Benthonic Foraminifera as Hydrographic Indicators in the Western South Atlantic Ocean. Journal of Foraminiferal Research, v. 8. (1), 6-34. Cerca con Google

Lourens, L.J., Hilgen, F.J., Shackleton, N.J., Laskar, J., Wilson, D., 2004. The Neogene Period. In: Gradstein, F.M., Ogg, J.G., Smith, A.G. (Eds.), A Geological Time Scale 2004. Cambridge University Press, Cambridge, 409–440. Cerca con Google

Lyle, M., Pisias, N., 1990. Ocean circulation and atmospheric CO changes: coupled use of models and paleoceanographic 2 data. Paleoceanography 5, 15–41. Cerca con Google

Mackensen, A., Harloff, J., 1995. Recent benthic foraminiferal associations and ecology of the Scotia Sea and Argentine Basin. Marine Micropaleontology, 31(1-2), 1-29. Cerca con Google

Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci, A. (Ed.), Proceedings 2nd International Conference Planktonic Microfossils Roma: Rome (ed. Tecnosci.) 2, 739-785. Cerca con Google

Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res., 96(B4), 6829–6848. Cerca con Google

Milliman, J.D. 1993: Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochemical Cycles 7, 927–957. Cerca con Google

Mikkelsen, N., 1990. Cenozoic diatom biostratigraphy and paleoceanography of the western equatorial Indian Ocean. Proc. ODP, Sci. Results 115, 411–432 Cerca con Google

Mortimer, N., Campbell, H.J., Tulloch, A.J., King, P.R., Stagpoole, V.M., Wood, R.A., Rattenbury, M.S., et al., 2017. Zealandia: Earth’s hidden continent. GSA Today, 27(3):27-35. doi:10.1130/GSATG321A.1. Cerca con Google

Munsell Color Company, Inc., 1994. Munsell Soil Color Chart (revised edition): Newburgh, MD (Munsell Color). Cerca con Google

Murray, J.W., 1991. Ecology and Palaeoecology of Benthic Foraminifera. Elsevier, Amsterdam. Cerca con Google

Murray, J.W., 2001. The niche of benthic foraminifera, critical thresholds and proxies. Mar. Micropaleontol. 41, 1-8. Cerca con Google

Murray, J.W., 2009. Ecology and applications of benthic foraminifera. Cambridge University Press. doi:10.1017/CBO9780511535529. Cerca con Google

Nees, S., Struck, U., 1999. Benthic Foraminieral response to major paleoceanographic changes. Reconstructing Ocean History: A Window into the Future. Abrantes F, Mix A (eds), Kluwer Academic/Plenum Publishers, pp. 195–216. Cerca con Google

Nicolo, C.S., Dickens, G.R., Hollis, C.J., and Zachos, J.C., 2007. Multiple early Eocene hyperthermals: their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology, 35(8):699-702. doi:10.1130/G23648A.1 Cerca con Google

Nigrini, C., 1991. Composition and biostratigraphy of radiolarian assemblages from an area of upwelling Northwestern Arabian. Sea, Leg 117. Proc. ODP, Sci. Results 117, 89–126. Cerca con Google

Nomura, R., 1991. Oligocene to Pleistocene benthic foraminiferal assemblages at sites 754 and 756, eastern Indian Ocean. Proc. ODP, Sci. Results 121, 31–76. Cerca con Google

Okada, H., Burky, D., 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Burky 1973, 1975). Marine Micropaleontology 5, 321-325. Cerca con Google

Olson, D.B., Hitchcock, G.L., Fine, R.A., Warren, B.A., 1993. Maintenance of the low-oxygen layer in the central Arabian Sea. Deep-Sea Res., Part II 40, 673–685. Cerca con Google

Pälike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton, N.J., Tripati, A.K., Wade, B.S., 2006. The heartbeat of the Oligocene climate system. Science 314, 1894–1898. doi:10.1126/science.1133822. Cerca con Google

Pälike, H., et al., 2007. Ceara Rise Oligocene–Miocene ODP926B Stable Isotope Data. IGBP PAGES/World Data Center for Paleoclimatology. Data Contribution Series # 2007-017 NOAA/NCDC Paleoclimatology Program, Boulder CO, USA. Cerca con Google

Perch-Nielsen, K., 1985. Cenozoic calcareous nannoplankton. In: Bolli, H.M., Saunders, J.B., Perch Nielsen, K., (Eds.), Plankton Stratigraphy, Cambridge University Press, pp. 427-554. Cerca con Google

Peterson, L.S., Backman, J., 1990. Late Cenozoic carbonate accumulation rates of ODP Leg 115 samples. PANGAEA. doi:10.1594/PANGAEA.755788. Cerca con Google

Peterson, L.C., Murray, D.W., Ehrmann, W.U., Hempel, P., 1992. Cenozoic carbonate accumulation and compensation depth changes in the Indian Ocean. In: Duncan, R.A., Rea, D.K., Kidd, R.B., Von Rad, U., Weissel, J.K. Eds. , Synthesis of Results From Scientific Drilling in the Indian Ocean. Am. Geophys. Union, Geophys. Monogr. 70, 311–333. Cerca con Google

Pross, J., Contreras, L., Bijl, P.K., Greenwood, D.R., Bohaty, S.M., Schouten, S., Bendle, J.A., et al., 2012. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature, 488(7409):73-77. doi:10.1038/nature11300. Cerca con Google

Raffi, I. and Flores, J.-A., 1995. Pleistocene through Miocene calcareous nannofossils from eastern equatorial Pacific Ocean (Leg 138). In Pisias, N.G., Mayer, L.A. Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds), Proc. ODP, Sci. Repults, 138: College Station, TX (Ocean Drilling Program), 223-286. Cerca con Google

Raffi, I., Backman, J., & Rio, D., 1998. Evolutionary trends of tropical calcareous nannofossils in the late Neogene. Marine Micropaleontology, 35(1-2), 17–41. doi:10.1016/s0377-8398(98)00014-0. Cerca con Google

Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., & Hilgen, F., 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews, 25(23-24), 3113–3137. doi:10.1016/j.quascirev.2006.07.007. Cerca con Google

Rea, D.K., 1992. Delivery of Himalayan sediment to the Northern Indian Ocean and its relation to global climate, sea level, uplift, and seawater strontium. In: Duncan, R.A., Rea, D.K., Kidd, R.B., Von Rad, U., Weissel, J.K. Eds. , Synthesis of Results From Scientific Drilling in the Indian Ocean. Am. Geophys. Union, Geophys. Monogr. 70, 387–402. Cerca con Google

Rea, D.K., Basov, I.A., Krissek, L.A. et al., 1995. Scientific results of drilling the North Pacific transect. Proc. ODP, Sci. Results 145, 577–596. Cerca con Google

Reid, J.L., 1965. Intermediate waters of the Pacific Ocean. Johns Hopkins Oceanographic Studies No. 2, Baltimore, 85 pp. Cerca con Google

Resig, J.M., 1993. Cenozoic stratigraphy and paleoceanography of biserial planktonic foraminfers, Ontong Java Plateau. Proc. ODP, Sci. Results 130, 231–244. Cerca con Google

Rind, D., Chandler, M., 1991. Increased ocean heat transports and warmer climate. J. Geophys. Res. 96, 7437–7461. Cerca con Google

Ruddiman, W.F., 2008. Earth's climate, Past and Future (2nd edition). Eds. W.H. Freeman and Company, New York. Cerca con Google

Salvador, A., 1994. International Stratigraphic Guide. Second Edition. The International Union of Geological Sciences and The Geological Society of America, Inc. Cerca con Google

Saraswati, P.K. and Srinivasan, M.S., 2016. Micropaleontology principles and applications. Springer Inter. Pub., Switzerland, 224 p. Cerca con Google

Savin, S.M., Douglas, R.G., and Stehli, F.G., 1975. Tertiary marine paleotemperatures. Geol. Soc. Am. Bull., 86, 1499–1510. Cerca con Google

Schneider, D.A., 1995. Paleomagnetism of some Leg 138 sediments: Detailing Miocene magnetostratigraphy. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., van Andel, T.H., et al., Proceedings ODP, Scientific Results 138 (Ocean Drilling Program, College Station, TX), 69–72. doi:10.2973/ Cerca con Google

Schroeder, C., Scott, D.B., Medioli, F.S., 1987. Can smaller benthic foraminifera be ignored in paleoenvironmental analysis? J. Foraminifer. Res. 17, 101-105. Cerca con Google

Seisser, W.G., 1995. Paleoproductivity of the Indian Ocean during the Tertiary Period. Global Planet. Change 11, 71–88. Cerca con Google

Shackleton, N.J., and Kennett, J.P., 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP sites 277, 279, and 281. Init. Rep. DSDP Proj., 29, 743–755. Cerca con Google

Shackleton, N.J., Baldauf, J., Flores, J.A., Iwai, M., Moore, T.C., Raffi, I., Vincent, E., 1995. Biostratigraphic summary for Leg 138. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., van Andel, T.H., et al., Proceedings ODP, Scientific Results 138 (Ocean Drilling Program, College Station, TX), 517–536. doi:10.2973/ Cerca con Google

Shackleton, N.J., Crowhurst, S., 1997. Sediment fluxes based on an orbitally tuned time scale 5 Ma to 14 Ma, Site 926. In: Curry, W.B., Shackleton, N.J., Richter, C., Bralower, T.J., et al., Proceedings ODP, Scientific Results 154 (Ocean Drilling Program, College Station, TX), 69–82. doi:10.2973/ Cerca con Google

Smart, C.W., King, S.C., Gooday, A.J., Murray, J.W., Thomas, E., 1994. A benthic foraminiferal proxy of pulsed organic matter paleofluxes. Mar. Micropaleontol. 23, 89-99. doi:10.1016/0377-8398(94)30002-7. Cerca con Google

Slotnick, B.S., Dickens, G.R., Nicolo, M.J., Hollis, C.J., Crampton, J.S., Zachos, J.C., and Sluijs, A., 2012. Large-amplitude variations in carbon cycling and terrestrial weathering during the latest Paleocene and earliest Eocene: the record at Mead Stream, New Zealand. The Journal of Geology, 120(5):487-505. doi:10.1086/666743. Cerca con Google

Sutherland, R., Dickens, G.R., Blum, P., and the Expedition 371 Scientists, 2019. Proceedings of the International Ocean Discovery Program Volume 371., doi:10.14379/iodp.proc.371.102.2019. Cerca con Google

Takayama, T., 1993. Notes on Neogene calcareous nannofossili biostratigraphy of the Ontong Java Plateau and size variations of Reticulofenestra coccoliths. In Berger, W.H., Kroenke, L.W. Mayer, L.A., et al., Proc. ODP, Sci. Results, 130: College Station, TX (Ocean Drilling Program), 179-229. Cerca con Google

Tarduno, J.A., 1994. Temporal trends of magnetic dissolution in the pelagic realm: gauging paleoproductivity? Earth Planet. Sci. Lett. 123, 39–48 Cerca con Google

Theyer, F., Mayer, L.A., Barron, J.A., Thomas, E., 1985. The equatorial Pacific high-productivity belt: elements for a synthesis of Deep Sea Drilling Project Leg 85 results. Initial Rep., DSDP 85, 971–985. Cerca con Google

Treguer, P., Nelson, D.M., Van Bennekom, A.J., DeMaster, D.J., Leynaert, A., Queguiner, B., 1995. The silica balance in the world ocean; a reestimate. Science 268, 375–379. Cerca con Google

Van Andel, T.H., Heath, G.R., Moore Jr., T.C., 1975. Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: a regional synthesis of Deep Sea Drilling Project data. Geol. Soc. Am., Mem. 143, 143 pp. Cerca con Google

Van Morkhoven, F.P.C.M., Berggren, W.A., Edwards, A.S., 1986. Cenozoic cosmopolitan deep-water benthic foraminifera. Bull. Cent. Rech. Explor.-Product. Elf-Aquitaine, Mem. 11, 421 pp. Cerca con Google

Wade, B.S., Pearson, P.N., Berggren, W.A., Pälike, H., 2011. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Science Reviews 104, 111–142. doi:10.1016/ j.earscirev.2010.09.00. Cerca con Google

Westerhold, T., Rӧhl, U., Donner, B., and Zachos, J.C., 2018. Global extent of early Eocene hyperthermal events: a new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209). Paleoceanography and Paleoclimatology, 33(6):626-642. doi:10.1029/2007GC001710. Cerca con Google

Woodruff, F., 1985. Changes in Miocene deep-sea benthic foraminiferal distribution in the Pacific Ocean: relationship to paleoceanography. Geol. Soc. Am. Bull., Mem. 143, 131–175. Cerca con Google

Woodruff, F., Douglas, R.G., 1981. Response of deep-sea benthic foraminifera to Miocene paleoclimatic events, DSDP site 289. Mar. Micropaleontol. 6, 617–632. Cerca con Google

Wright, Miller, 1996. Control of North Atlantic Deep Water circulation by the Greenland–Scotland Ridge. Paleoceanography 11, 157–170. Cerca con Google

Wyrtki, K., 1971. Oceanographic Atlas of the International Indian Ocean Expedition. National Science Foundation, Washington, DC, 351 pp. Cerca con Google

Zachos, J.C., Flower, B.P., Paul, H. 1997. Orbitally paced climate oscillations across the Oligocene/Miocene boundary. Nature. 1997, Vol. 388, p. 567-570. Cerca con Google

Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rythyms, and aberrations in global climate 65 Ma to Present. Science, vol. 292, pp. 686-693. Cerca con Google

Zachos, J.C., Dickens, G.R., and Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451(7176):279-283. doi:10.1038/nature06588 Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record