Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Gallina, Guido (2019) La risposta dei nannofossili calcarei al Middle Eocene Climatic Optimum (MECO): dati dalla Kuma Formation (Belaya River, Russia) = The response of calcareous nannofossils to the Middle Eocene Climatic Optimum (MECO): clues from the Kuma Formation (Belaya River, Russia). [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF (Tesi magistrale)
77Mb

Abstract

In this Master thesis, the biostratigraphic and paleoecological analysis of the Belaya River section, an on-land Eocene succession, belonging to the Kuma Formation, an outcropping along the Belaya River (south-west Russia) is presented. This study is based on calcareous nannofossil assemblages. The studied succession documents a portion of the middle Eocene. The results allowed to biostratigraphically frame the section and analyze the response of calcareous nannofossils assemblages to the Middle Eocene Climatic Optimum (MECO), a prominent global warming event, occurred during the middle Eocene. The biostratigraphic analysis carried out on the calcareous nannofossil assemblages allowed to date the succession, based on its the paleontological content, using appearance and disappearance events. To this aim, the standard biozonations of Martini (1971) and Okada & Bukry (1980) have been applied. Furthermore, to improve the biostratigraphic resolution obtained using the traditional biozones, two additional bioschemes have been integrated (Fornaciari et al., 2010; Agnini et al., 2014). According to the traditional biozonations, the analyzed section belongs to Zone NP16 (Martini, 1971), or Subzone CP14a (Okada & Bukry, 1980). Following Agnini et al. (2014), the succession extends between Zone CNE13 and Zone CNE15. Finally, according to Fornaciari et al. (2010), the section comprises an interval between Subzone MNP16A and Subzone MNP17A. However, due to the coincidence/inversion of some bio-horizons, a complete application of this biozonation was not possible. An age model has been derived, based on GTS (2012), which provides an age of 42.62 Ma for the base of the section and of 39.67 Ma for the top, and a total duration of 2.95 Myr. From the chronostratigraphic point of view, the succession spans from the Lutetian to the Bartonian (middle Eocene). The age-depth graph has evidenced for three sedimentation rates along the studied section: 10.3 m/Myr for the lower part of the succession, 5.1 m/Myr for a short interval in the middle part, and 42.1 m/Myr for the upper part. Biostratigraphic and biochronological data have been integrated with oxygen and carbon isotopic curves (δ 18 O and δ 13 C) data as well as with the bulk carbonate content (%). Consistent with the literature (Bohaty & Zachos, 2003; Zachos et al., 2001; Zachos et al., 2008), the δ 18 O curve displays a lightening during the the MECO, while the δ 13 C curve is characterized by changes related to perturbation in the carbon cycle (Dickens et al., 1995); the carbonate content profile is consistent with a progressive increase in productivity. Finally, the paleoecological analysis indicates that temperature and trophic conditions are the two main factors affecting the changes observed in the calcareous nannofossil assemblages. In particular, the carbonate content, the changes the relative abundances of taxa and the interpretation of the Principal Component Analysis harmonize perfectly with a gradual trend toward more eutrophic conditions, with a paroxysmal phase coinciding with the acme phase of the MECO. Therefore, despite the lack of chronological constraints based on magnetostratigraphic or cyclostratigraphic data, the use of biochronological data has allowed to classify more precisely the section. Moreover, the paleoecological analysis allowed to observe the response of the calcareous nannofossils assemblages to the Middle Eocene Climatic Optimum.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Subjects:Area 04 - Scienze della terra > GEO/01 Paleontologia e paleoecologia
Codice ID:63050
Relatore:Agnini, Claudia
Correlatore:Cappelli, Carlotta
Data della tesi:26 September 2019
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Agnini, C., Fornaciari, E., Giusberti, L., Grandesso, P., Lancia, L., Luciani, V., Muttoni, G., Pälike, H., Rio, D., Spofforth, D.J.A., Stefani, C., 2011. Integrated bio magnetostratigraphy of Alano section (NE Italy): a proposal for defining the middle-late Eocene boundary. Geological Society of America Bullettin, vol. 123, pp. 841-872. Cerca con Google

Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., Rio, D., 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy, vol. 47/2, pp. 131-181. Cerca con Google

Akhmetiev, M.A., Popov, S.V., Krhovsky, J., Goncharova, I.A., Zaporozhets, N.I., Sychevskaya, E.K., Radionova, E.P., 1995. The Paleogene history of the western Siberian seaway: a connection of the Peri-tethys to the arctic Ocean. Vienna, Austrian Journal of Earth Sciences, vol. 105, pp. 50-67. Cerca con Google

Allen, J.R., 2013. Basin Analysis: principles and application to petroleum play assessment, 3 rd edition. (Eds) Wiley &Blackwell, Oxford, p. 632. Cerca con Google

Archer, D., Kheshgi, H., Maier-Reimer, E., 1997. Multiple timescales for neutralization of fossil fuel CO 2. Geophys. Res. Lett., vol. 24(4), pp. 405-408. Cerca con Google

Armstrong, H.A., Brasier, M.D., 2005. Calcareous nannoplankton: coccolitophores and discoasters. In: Armstrong, H.A., Brasier, M.D., Microfossils, 2nd edition. Eds Blackwell Publishing, pp. 305. Cerca con Google

Aubry, M.P., 1992. Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration. In: Prethero, D.R., Berggren, W.A., Eds., Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton, NJ, pp. 272-309. Cerca con Google

Backman, J., 1987. Quantitative calcareous nannofossil biochronology of middle Eocene through early Oligocene sediments from DSDP Sites 522 and 523. Abhandlungen Geologischen Bundesanstalt, vol, 39, pp. 21-31. Cerca con Google

Backman, J., Raffi, I., Rio, D., Fornaciari, E., Pälike, H., 2012. Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy, vol. 45/3, pp. 221-244. Cerca con Google

Backman, J., Shackleton, N.J., 1983. Quantitative biochronology of Pliocene and early Pleistocene calcareous nannoplankton from the Atlantic Indian and Pacific Oceans. Marine micropaleontology, vol. 8, pp. 141-170. Cerca con Google

Bailey, D.K., 1993. Carbonate magmas. J. Geol. Soc. London, vol. 150(4), pp. 637-651. Cerca con Google

Beniamovski, V.N., 2012. A high resolution Lutetian-Bartonian planktonic foraminiferal zonation in the Crimean-Caucasus region of the Northeastern Peri-Tethys. Vienna, Austrian Journal of Earth Sciences, vol. 105/1, pp. 117-128. Cerca con Google

Beniamovski, V.N, Alekseev, A.S., Ovechkina, M.N., Oberhänsli, H., 2003. Middle to upper Eocene dysoxic-anoxic Kuma Formation (northeast Peri-Tethys): Biostratigraphy and paleoenvironments. Geological Society of America Special Paper 369, pp. 95-112. Cerca con Google

Berggren, W. A., Kent, D. V., Swisher III, C. C. & Aubry, M. P., 1995. A revised Cenozoic Geochronology and chronostratigraphy. Sepm, No. 54, pp. 129-212. Cerca con Google

Bohaty, S. M., Zachos, J.C., 2003. A significant Southern Ocean warming event in the late middle Eocene. Geology. vol. 31, pp. 1017-1020. Cerca con Google

Bohaty, S. M., Zachos, J.C., Florindo, F., Delaney, M.L., 2009. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography, vol. 24, PA2207. Cerca con Google

Bown, P.R., Lees, J.A., Young, J.R., 2004. Calcareous nannofossil evolution and diversity through time. In: H.R. Thierstein & J.R. Young (Eds). Coccolitophores: from molecular processes to global impact. Springer-Verlag: pp. 481-508. Cerca con Google

Bramlette, M.N., Wilcoxon, J.A., 1967. Middle Tertiary calcareous nannoplankton of the Cipero section, Trinidad, W.I. Tulane Studies in Geology, vol. 5, n° 3, pp. 93-131. Cerca con Google

Bukry, D., 1970. Coccolith age determination Leg 3, Deep Sea Drilling Project. Init. Rep., DSDP, vol. 3, Nat. Sc. Found, pp. 586-611. Cerca con Google

Bukry, D., 1971. Cenozoic calcareous nannofossils from the Pacific Ocean. Trans. San Diego Soc. Nat. Hist., vol. 16, pp. 303-327. Cerca con Google

Bukry, D., 1973. Low latitude coccolith Biostratigraphic Zonation. In: Edard, N.T., Saunders, J. B. et al. Init. Rep., DSDP, vol. 15, Washington (U. S. Gout Printing Office), pp. 685-703. Cerca con Google

Bukry, D., 1975. Coccolith and silicoflagellate Stratigraphy Northwestern Pacific Ocean, Deep Sea Drilling Project, Leg 32. In: Larson, R. L., Moberly, R. et al. Init. Rep., DSDP, vol. 32, pp. 677-701. Cerca con Google

Cambray, H., Cadet, J.P., 1996. Synchronisme de l'activite volcanique d'arc: Mythe ou realite?. C. R. Acad. Sci., Ser. Ila Sci. Terre Planetes, vol. 322(3), pp. 237- 244. Cerca con Google

Cande, S.C. & Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research, vol. 100, n° B4, pp. 6093-6095. Cerca con Google

Catanzariti, R., Rio, D., Martelli, L., 1997. Late Eocene to Oligocene calcareous nannofossil biostratigraphy in Northern Appennines: the Ranzano sandstone. Memorie di Scienze Geologiche, Padova, vol. 49, pp. 207-253. Cerca con Google

Dickens, G.R., 2000. Methane oxidation during the late Paleocene thermal maximum. Bull. Sco. Geol. Fr., vol. 171 (1), pp. 37-49. Cerca con Google

Dickens, G.R., O’Neil, J.R., Rea, D.K., Owen, R.M., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, vol. 10, pp. 965-971. Cerca con Google

Edvardsen, B., Eikrem, W., Green, J.C., Andersen, R.A., Moon-van der Staay, S.Y., Medlin, L.K., 2000. Phylogenetic reconstruction of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia, vol. 39, pp. 19-35. Cerca con Google

Edvardsen, B., Medlin, L.K., 2007. Molecular systematics of Haptophyta. In: J. Brodie & J. Lewis (Eds). Unravelling the algæ: the past, present, and future of algal systematics. The systematics Association Special Volume Series 73, pp. 183-196. Cerca con Google

Epstein, S., Buchsbaum, R., Lowenstam, H., Urey, H., 1951. Carbonate-water isotopic temperature scale. Geological Society of American Bulletin, vol. 62, pp. 417-426. Cerca con Google

Erez, J., Luz, B., 1983. Experimental paleotemperature equation for planktonic foraminifera. Geochimica et Cosmochimica Acta, vol. 47, Issue 6, pp. 1025-1031. Cerca con Google

Fornaciari, E., Agnini, C., Catanzariti, R., Rio, D., Bolla, E.M., Valvasoni, E., 2010. Mid-Latitude calcareous nannofossil biostratigraphy and biochronology across the middle to late Eocene transition. Stratigraphy, vol. 7, no. 4, pp. 229-264. Cerca con Google

Gavrilov, Y.O., Shcherbinina, E.A., Muzylöv, N.G., 2000. A Paleogene sequence in central North caucasus: a response to paleoenvironmental changes. GFF, vol. 122, pp. 51-53. Cerca con Google

Gradstein, F.M., Ogg, J.G., Hilgen, F.J., 2012. On the Geologic Time Scale. Newsletters on Stratigraphy, vol. 45/2, pp. 171-188. Cerca con Google

Hay, W., Mohler, H.P., Roth, P.H., Schmidt, R.R., Bourdeaux H.E., 1967. Calcareous nannoplankton zonation of the Cenozoic of the Gulf Coast and Caribbean-Antillean area and transoceanic correlation Gulf Coast Assoc. Geol. Soc. Trans., vol. 17, pp. 428-480. Cerca con Google

Holmes, M.A., Waltkins, D.K., Norris, R.D., 2004. Paleocene Cyclic Sedimentation in the Western North atlantic, ODP Site 1051, Black Nose. Marine Geology, Elsevier, vol. 209, pp. 31-43. Cerca con Google

Jovane, L., Florindo, F., Coccioni, R., Dinarés-Turell, J., Marsili, A., Monechi, S., Roberts, A.P., Sprovieri, M., 2007. The middle Eocene climatic optimum event in the Contessa Highway section, Umbrian Apennines, Italy. GSA Bullettin, vol 119, no. 3/4, pp. 413-427. Cerca con Google

Kennett, J.P., Stott, L.D., 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinction at the end of the palaeocene. Nature, vol. 353, pp. 225-229. Cerca con Google

Kerrick, D.M., Caldeira, K., 1993, Paleoatmospheric consequences of CO 2 released during early Cenozoic regional metamorphism in the Tethyan orogen. Chem. Geol., vol. 108, pp. 201-230. Cerca con Google

Lohmann, G.P., Carlson, J.J., 1981. Oceanographic significance of Pacific late Miocene calcareous nannoplankton. Marine Micropaleontology, vol. 6, pp. 553-579. Cerca con Google

Lourens, L.J., Hilgen, F., Shackleton, N.J., Laskar, J., 2004. The Neogene Period. In: Gradstein, F., Ogg, J. & Smith, A. (Eds.), A Geologic Time Scale 2004, Elsevier. Cerca con Google

Lourens, L.J., Sluijs A., Kroon, D., Zachos, J.C., Thomas, E., Rohl, J., Bowles, J., Raffi, I., 2005. Astronomical pacing of late Paleocene to early Eocene global warming events. Nature, vol. 435, pp. 1083-1087. Cerca con Google

Lyle, M., Mitchell, N., Pisias, N., Mix, A., Martinez, J.I., 2005. Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific?. Paleoceanography, vol. 20, PA 1005. Cerca con Google

Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplakton zonation. In: Proc. II Planktonic Conf. Roma, pp. 739-785. Cerca con Google

Nikishin, A.M., Ziegler, P.A., Panov, D.I., Nazarevich, B.P., Brunet, M.F., Stephenson, R.A., Bolotov, S.N., Korotaev, M.V., Tikhomirov, P.L., 2001. Mesozoic and Cainozoic evolution of the Scythian Platform-Black Sea-Caucasus domain. In: P.A. Ziegler, W. Cavazza, A.H.F. Robertson & S. Crasquin-Soleau (eds), Peri Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mém. Mus. natn. Hist. nat. 186, pp. 295-346. Cerca con Google

Norris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Kumar Ghosh, A., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Kirtland Turner, S., Whiteside, J.H., Yamaguchi, T., Yamamoto, Y , 2014. Proceedings of the Integrated Ocean Drilling Program. Vol. 342. Cerca con Google

Okada, H. & Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphy zonation (Bukry, 1973, 1975). Marine Micropaleontology, vol. 51, pp. 321-325. Cerca con Google

Pälike, H., Lyle, M.W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C., Bohaty, S.M., Bown, P., Bush, W., Channell, J.E.T., Chun, C.O.J., Delaney, M., Dewangan, P., Dunkley Jones, T., Edgar, K.M., Evans, H., Fitch, P., Foster, G.L., Gussone, N., Hasegawa, H., Hathorne, E.C., Hayashi, H., Herrle, J.O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K., Ito, T., Kamikuri, S., Kimoto, K., Kuroda, J., Leon-Rodriguez, L., Malinverno, A., Moore Jr, T.C., Murphy, B.H., Murphy, D.P., Nakamura, H., Ogane, K., Ohneiser, C., Richter, C., Robinson, R., Rohling, E.J., Romero, O., Sawada, K., Scher, H., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B.S., Westerhold, T., Wilkens, R., Williams, T., Wilson, P.A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., Zeebe, R.E., 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depht. Nature, vol. 488, pp. 609-615. Cerca con Google

Pälike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackelton, N.J., Tripati, A.K., Wade, B.S., 2006. The Heartbeat of the Oligocene Climate System. Science, vol. 314, pp. 1894-1898. Cerca con Google

Perch-Nielsen, K., 1985. Cenozoic calcareous nannoplankton. In: Bolli, H.M., Saunders, J. B., Perch-Nielsen, K., (Eds.), Plankton Stratigraphy, Cambridge University Press, pp. 427-554. Cerca con Google

Percival JR, S.F., 1984. Late Cretaceous to Pleisocene calcareous nannofossils from the South Atlantic, Deep Sea Drilling Project Leg 73. In: Hsü, K.J., LaBrecque, J., et al., Eds., Proceedings of the Deep Sea Drilling Project, Initial Reports, 73: pp. 391-424. Washington, DC: US Government Printing Office. Cerca con Google

Peterson, J.C., Backman, J., 1990. Late Cenozoic carbonate accumulation and the history of the carbonate compensation depth in the western equatorial Indian Ocean. Proceedings of the Ocean Drilling Program, Scientific Results, vol. 115, pp. 467-507. Cerca con Google

Popov, S.V., Studencka, B., 2015. Brackish-Water Solenovian Mollusks from the Lower Oligocene of the Polish Carpathians. Paleontological Journal, vol. 49(4), pp. 342-355. Cerca con Google

Pospichal, J.J., 1991. Calcareous nannofossils across Cretaceous/Tertiary boundary at the Site 752 Eastern Indian Ocean. Proc. ODP, Sci. Res., vol. 121, pp. 395-413. Cerca con Google

Preto, N., Agnini, C., Rigo, M., Sprovieri, M., Westphal, H., 2013. The calcareous nannofossil “Prinsionphaera” achieved rock-forming abundances in the latest Triassic of western Tethys: consequences for the δ 13 C of bulk carbonate. Biogeosciences, vol. 10, pp. 6053-6068. Cerca con Google

Radionova, E.P., Beniamovski, V.N., Iakovleva, A.I., Muzylov, N.G., Oreshkina, T.V., Shcherbinina, E.A., Kozlova, G.E., 2003. Early Paleogene transgression: Stratigraphical and sedimentological evidence from the northern Peri-Tethys. Geological Society of America, Special Paper 369, pp. 239-261. Cerca con Google

Radionova, E.P. & Khokhlova, I.E., 1994. Paleogene episodes of biogenic silica accumulation in the northern Caucasus and adjacent Tethyan regions. Stratigraphy and Geological Correlations, vol. 2, n° 5, pp. 161-169. Cerca con Google

Rea, D.K., Lyle, M.W., 2005. Paleogene calcite compensation depth in the eastern subtropical Pacific: Answers and questions. Paleoceanography, vol. 20, PA 1012. Cerca con Google

Rio, D., Fornaciari, E., Raffi, I., 1990. Late Oligocene through early Pleistocene calcareous nannofossil from western equatorial Indian Ocean (Leg 115). In: Duncan R. A., Backman, J., Peterson, L.C., et al., Proc. ODP Sci. Res., vol. 115, pp. 175-235. Cerca con Google

Roth, P. H., 1970. Oligocene calcareous nannoplankton biostratigraphy. Eclogae Geologicae Helvetiae, vol. 63, pp. 799-881. Cerca con Google

Roth, P. H., 1973. Calcareous Nannofossil. Leg 17, Deep Sea Drilling Project. In: Winterer et al., Proceedings of the Deep Sea Drilling Project, Initial Reports, 17, pp. 695-795. Cerca con Google

Roth, P.H., Baumann, P., Bertolino, V., 1971. Late Eocene-Oligocene calcareous nannoplankton from central and northern Italy. In: Farinacci, Ed., Proceedings of the 2 nd Planktonic Conference, pp. 1069-1097. Roma: Edizioni Tecnoscienza, vol. 2. Cerca con Google

Ruddiman, W.F. (Eds.), 2007. Earth’s Climate: Past and Future, 2 nd edition. Eds. W.H. Freeman and Company, New York, 388 pp. Cerca con Google

Sachsenhofer, R.F., Popov, S.V., Bechtel, A., Coric, S., Francu, J., Gratzer, R., Grunert, P., Kotarba, M., Mayer, J., Pupp, M., Rupprecht, B.J., Vincent, S.J., 2017. Oligocene and Lower Miocene source rocks in the paratethys: palægeographical and stratigraphical controls. In: Simmons, M.D., Tari, G.C., Okay, A.I. (Eds). Petroleum Geology of the Black Sea. Geological Society, London, Special Publications, vol. 464. Cerca con Google

Salvador, A., 1994. International Stratigraphic Guide. Second edition, I.U.G.S. & Geol. Soc. Amer., Boulder, Colo., pp. 214. Cerca con Google

Saraswati, P.K., Srinivasan, M.S., 2016. Biostratigraphy. In: Micropaleontology. Springer, Cham. Cerca con Google

Sexton, P.F., Wilson, P.A., Norris, R.D., 2006. Testing the Cenozoic multisite composite δ 18 O and δ 13 C curves: New monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207). Paleoceanography. Vol. 21, PA2019. Cerca con Google

Spofforth, D.J.A., Agnini, C., Pälike, H., Rio, D., Fornaciari, E., Giusberti, L., Luciani, V., Lanci, L., Muttoni, G., 2010. Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys. Paleoceanography, vol. 25, PA3210. Cerca con Google

Tappan, H., 1980. The Paleobiology of Plants Protists. W.H. Freeman, New York. Cerca con Google

Tappan, H., Loeblich jr, A.R., 1973. Evolution of the ocean plankton. Earth Science Reviews, vol. 9, pp. 207-240. Cerca con Google

Thierstein, H.R., Young, J.R. (Eds.), 2004. Coccolithophores: from molecular processes to global impact. Springer Science & Business Media, 565 pp. Cerca con Google

Thomas, E., Zachos, J.C., Bralower, T.J., 2000. Deep sea acidification on a warm Earth. In: Warm Climates in Earth History, Eds., Huber, MacLeod and Wing, Cambridge University Press, New York, pp. 132-160. Cerca con Google

Toffanin, F., Agnini, C., Fornaciari, E., Rio, D., Giusberti, L., Luciani, V., Spofforth, D.J.A., Pälike, H., 2011. Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum: Clues from the central-western Tethys (Alano section, NE Italy). Marine Micropaleontology, vol. 81, pp. 22-31. Cerca con Google

Toffanin, F., Agnini, C., Rio, D., Acton, G., Westerhold, T., 2013. Middle Eocene to early Oligocene calcareous nannofossil biostratigraphy at IODP Site U1333 (equatorial Pacific). Micropaleontology, vol. 59, pp. 69-82. Cerca con Google

Vanderberghe, N., Hilgen, F.J., Speijer, R.P., 2012. The paleogene Period. In: Gradstein, F.M., Ogg, J.G., Schmistz, M.D., Ogg, G.M., The Geologic Time Scale 2012, vol. 1, Elsevier. Cerca con Google

Van der Boon, A., 2017. Intermittent oxygen-depleted episodes and the relation to middle Eocene to early Oligocene climate through integrated stratigraphy of the Maikop type section, Belaya River, Russia. In: From Peri-Tethys to Paratethys: Basin restriction and anoxia in central Eurasia linked to volcanic belts in Iran, Utrecht Studes in Earth Sciences, No. 142, pp. 55-77. Cerca con Google

Veto, I., 1987. An Oligocene Sink for Organic carbon: Upwelling in the Paratethys. Palæogeogr. Palæoclimatol. Palæoecol., vol. 60, pp. 143-153. Cerca con Google

Villa, G., Fioroni, C., Pea, L., Bohaty, S., Persico, D., 2008. Middle Eocene – late Oligocene climate variability: Calcareous nannofossil response at Kerguelen Plateau, Site 748. Marine micropaleontology, vol. 69, pp. 173-192. Cerca con Google

Wade, B.S., Pearson, P.N., Bergreen, W.A., Pälike, H., 2011. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Science Reviews, vol. 104, pp. 111-142. Cerca con Google

Wei, W., Wise jr, S.W., 1990. Biogeographic gradients of middle Eocene – Oligocene calcareous nannoplankton in the South Atlantic Ocean. Paleogeography, Paleoclimatology, Paleoecology, vol. 79, pp. 29-61. Cerca con Google

Wei, W., Wise jr, S.W., 1990. Middle Eocene to Pleistocene calcareous nannofossils recovered by Ocean Drilling Program Leg 113 in the weddell Sea. In: Barker, P.F., Kennett, J.P., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), vol. 113, pp. 639-666. Cerca con Google

Westerhold, T., Röhl, U., Frederichs, T., Bohaty, S.M., Zachos, J.C., 2015. Astronomical calibration of the geological timescale: closing the middle Eocene gap. Climate of the Past, vol. 11, pp. 1181-1195. Cerca con Google

Westerhold, T., Röhl, U., Pälike, H., Wilkens, P.A., Acton, G., 2014. Orbitally tuned timescale and astronomical forcing in the middle Eocene to early Oligocene. Climate of the Past, vol. 10, pp. 955-973. Cerca con Google

Winter, A., Siesser, W.G. (Eds.), 1994. Coccolithophores. Cambridge University Press, 252 pp. Cerca con Google

Young, J.R., Bergen, J.A., Bown, P.R., Burnett, J.A., Fiorentino, A., Jordan, R.W., Kleijne, A., Niel, B.E. van, Romein, A.J.T. & Salis, K. von, 1997. Guidelines for coccolith and Calcareous nannofossil terminology. Paleontology, vol. 40 (4), pp. 875-912. Cerca con Google

Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse warming and carbon - cycle dynamics. Nature, vol. 451, pp. 279- 283. Cerca con Google

Zachos, J.C., McCarren, H., Murphy, B., Röhl, U., Westerhold, T., 2010. Tempo and scale of late Paleocene and early eocene carbon cycles: implications for the origin of hyperthermals. Earth and Planetary Sciences Letters, vol. 299, pp. 242 249. Cerca con Google

Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, Rhythms and Aberrations in Global Climate 65 Ma to Present. Paleocl. Review, Science, vol. 292, pp. 686-693. Cerca con Google

Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L.J., McCarren, H., Kroon, D., 2005. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science, vol. 308, pp. 1611-1615. Cerca con Google

Zakrevskaya, E., Beniamovsky, V., Less, G., Báldi-Beke, M., 2011. Integrated Biostratigraphy of Eocene Deposits in the Gubs Section (Northern Caucasus) with special Attention to the Ypresian/Lutetian Boundary and to the Peritethyan Tethyan Correlation. Turkish Journal of Earth Sciences, vol. 20, pp. 753-792. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record