Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

La Valle, Fabio (2019) Factors controlling the thickness of fault damage zones in carbonates (Central Apennines, Italy). [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF (Tesi magistrale ed allegati)
55Mb
[img]
Preview
PDF (Tesi magistrale ed allegati)
1753Kb
[img]
Preview
PDF (Tesi magistrale ed allegati)
210Mb
[img]
Preview
PDF (Tesi magistrale ed allegati)
540Mb

Abstract

The Italian Central Apennines are one of the most seismically active areas in the Mediterranean (e.g., L’Aquila-Pizzoli Mw 6.7, 1703; Avezzano Mw 7.1, 1915; L’Aquila Mw 6.1, 2009). Most of this continuous seismicity is produced by earthquake ruptures propagating along normal faults hosted in carbonate rocks (dolostones and limestones). Some of these active fault zones are well-exposed in the mountain belt within badlands exposures. The most impressive structural feature of these exposed fault zones is the occurrence of up to hundreds of meters thick in-situ shattered rocks (fault rocks reduced in fragments < 1 cm in size on average and affected by negligible shear strain, i.e. they may preserve original sedimentary fabrics such as bedding, laminations etc.). However, both the geometry of these shattered rock bodies and how they have been produced (during seismic rupture propagation or other stages of the seismic cycle) remain largely unknown, also because of the lack of quantitative fault zone structural data (e.g., how shattered fault rocks are distributed along fault strike, how their thickness varies with fault length, displacement, geometry, etc.). A deep understanding of how in-situ shattered carbonate rocks are produced may impact our understanding of earthquake mechanics in carbonates and seismic hazard studies. Given the lack of quantitative data about in-situ shattered fault rocks in active fault zones in carbonates, the main goals of this thesis are: 1. the detailed field structural survey to quantify the distribution and thickness of in-situ shattered rocks and, 2. the remote-sensing analysis coupled with literature data review to determine, if any, scale relations between fault zone length, displacement, geometry and thickness of in-situ shattered fault rocks in carbonates. Indeed, such dataset is at the base of any model about the formation of the in-situ shattered rocks. To achieve these goals: 1. I conducted detailed field structural geology survey of the Monte Marine fault zone (Central Apennines), whose damage zone is characterized by in-situ shattered dolostones, 2. I conducted Optical and Scanning Electron Microscopy microstructural investigations of both in-situ shattered fault rocks and fault slipping zones, 3. I produced a catalogue which includes six main active normal fault zones of the Central Apennines characterized by up to 100s m thick damage zones with in-situ shattered carbonates. In particular, I mapped at 1:500 scale the Monte Marine fault zone (between thevillages of Pizzoli and Arischia, 10 km NE of the town of L’Aquila, Italy) where two fault strands overlap and collected data in 26 structural stations. Here, the fault core is ~ 30 m thick while the damage zone reaches ~ 1000 m in thickness and hosts in-situ shattered rocks, plus hundreds of minor synthetic and antithetic extensional faults, strike-slip and thrust faults. The latter are interpreted as Miocene to Pliocene structures reactivated during the Quaternary extensional phase and that interfered with newly formed post-orogenic normal faults, thus increasing the cataclastic rock volume in the intersection areas. The geological cross sections provided in this study underlie structural complexities due to the linkage of different fault segments and to the inherited compressional-to-extensional tectonic inversion. Based on the field observations, I propose that the extraordinary volumes of damage zone in the studied area of the Monte Marine Fault zone result from a combination of 1. geometrical complexities associated to the overstep sector, 2. presence of inherited compressional structures (thrust faults) and 3. seismogenic behaviour of the Master and minor faults. Cataclasites and in-situ shattered rocks are inferred to be the result of shattering up to hundreds of meters far from the Master Fault due to the stress perturbations and the near-field elastic waves induced and released by the propagation of seismic ruptures both along the Master Fault (main shocks) and minor faults cutting the damage zone (aftershocks). To produce the fault catalogue I used satellite images coupled with published geological maps to recognize where badland-type exposures could be related to the presence of in-situ shattered rocks. The Middle-Aterno Valley, the Morrone, the Venere, the Campo Imperatore and the Pescasseroli fault zones were also selected for less detailed structural geology survey to determine the fault damage zone thickness. The main results of the thesis include: 1. the first description of fault zone rocks distribution of the Monte Marine Fault and the reconstruction of the fault architecture in the overstep sector, 2. the first description of inherited compressional structures within the Monte Marine Fault zone, 3. exploiting the still limited fault catalogue, I find power-law relations between fault damage zone thickness, fault displacement and fault length. In particular, the thickness of the damage zone increases with fault displacement and slightly decreases with fault length suggesting that first order geometrical complexities (e.g., presence of step-overs) control the thickness of damage zones.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:Fault damage zones, Carbonates, Earthquakes
Subjects:Area 04 - Scienze della terra > GEO/03 Geologia strutturale
Codice ID:63051
Relatore:Di Toro, Giulio
Correlatore:Fondriest, Michele
Data della tesi:26 September 2019
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

References Cerca con Google

Abercrombie, R.E., and Rice, J.R., 2005, Can observations of earthquake scaling constrain slip weakening? In Geophysical Journal International, v. 162, p. 406–424. Cerca con Google

Adamoli, L., Calamita, F., Pierantoni, P.P., Pizzi, A., Ridolfi, M., Rusciadelli, G., and Scisciani, V., 1997, Miocene pre-thrusting normal faults in the Central Apennines (Italy) in Tectonic Studies Group Annual General Meeting. Cerca con Google

Agosta, F., and Aydin, A., 2006, Architecture and deformation mechanism of a basin-bounding normal fault in Mesozoic platform carbonates, central Italy: Journal of Structural Geology, v. 28, p. 1445–1467, doi:10.1016/J.JSG.2006.04.006. Cerca con Google

Agosta, F., and Kirschner, D.L., 2003, Fluid conduits in carbonate-hosted seismogenic normal faults of central Italy: Journal of Geophysical Research: Solid Earth, v. 108. Cerca con Google

Agosta, F., Prasad, M., and Aydin, A., 2007, Physical properties of carbonate fault rocks, fucino basin (Central Italy): Implications for fault seal in platform carbonates: Geofluids, v. 7, p. 19–32, doi:10.1111/j.1468-8123.2006.00158.x. Cerca con Google

Agosta, F., Wilson, C., and Aydin, A., 2015, The role of mechanical stratigraphy on normal fault growth across a Cretaceous carbonate multi-layer, central Texas (USA): Italian Journal of Geosciences, v. 134, p. 423–441, doi:10.3301/IJG.2014.20. Cerca con Google

Aki, K., 1989, Geometric features of a fault zone related to the nucleation and termination of an earthquake rupture, in Proceedings of Conference XLV. Fault Segmentation Controls of Rupture Initiation and Termination, p. 1–9. Cerca con Google

Allmendinger, R., Cardozo, N., and Fisher, D., 2011, Structural geology algorithms: Vectors and tensors: Cambridge University Press. Cerca con Google

Alvarez, W., 1976, A former continuation of the Alps: Bulletin of the Geological Society of America, v. 87, p. 891–896. Cerca con Google

Alvarez, W., Cocozza, T., and Wezel, F.C., 1974, Fragmentation of the Alpine orogenic belt by microplate dispersal: Nature, v. 248, p. 309. Cerca con Google

Ambrosetti, P., 1983, Neotectonic map of Italy. Cerca con Google

Andrews, D.J., 2005, Rupture dynamics with energy loss outside the slip zone: Journal of Geophysical Research: Solid Earth, v. 110, p. 1–14, doi:10.1029/2004JB003191. Cerca con Google

Ballas, G., Soliva, R., Benedicto, A., and Sizun, J.-P., 2014, Control of tectonic setting and large-scale faults on the basin-scale distribution of deformation bands in porous sandstone (Provence, France): Marine and Petroleum Geology, v. 55, p. 142–159. Cerca con Google

Barchi, M.R., De Feyter, A., Magnani, M.B., Minelli, G., Pialli, G., and Sotera, B.M., 1998, The structural style of the Umbria-Marche fold and thrust belt: Mem. Soc. Geol. It, v. 52, p. 38. Cerca con Google

Barchi, M., Galadini, F., Lavecchia, G., Messina, P., Michetti, A.M., Peruzza, L., Pizzi, A., Tondi, E., and Vittori, E., 2000, Sintesi delle conoscenze sulle faglie attive in Italia Centrale: GNDT, Gruppo Nazionale per la Difesa dai Terremoti, p. 62. Cerca con Google

Basili, R., Valensise, G., Vannoli, P., Burrato Pierfrancesco, Umberto Fracassi, Mariano, S., Monica Tiberti Maria, and Boschi Enzo, 2008, The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy’s earthquake geology: Tectonophysics, v. 453, p. 20–43, doi:10.1016/j.tecto.2007.04.014. Cerca con Google

Ben-Zion, Y., and Shi, Z., 2005, Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk: Earth and Planetary Science Letters, v. 236, p. 486–496, doi:10.1016/j.epsl.2005.03.025. Cerca con Google

Ben-Zion, Y., and Zaliapin, I., 2019, Spatial variations of rock damage production by earthquakes in southern California: Earth and Planetary Science Letters, v. 512, p. 184–193. Cerca con Google

Berg, S.S., and Skar, T., 2005, Controls on damage zone asymmetry of a normal fault zone: Outcrop analyses of a segment of the Moab fault, SE Utah: Journal of Structural Geology, v. 27, p. 1803–1822, doi:10.1016/j.jsg.2005.04.012. Cerca con Google

Bigi, S., Casero, P., and Ciotoli, G., 2011, Seismic interpretation of the Laga basin; constraints on the structural setting and kinematics of the Central Apennines: Journal of the Geological Society, v. 168, p. 179–190. Cerca con Google

Bigi, S., and Pisani, P., 2003, The" pre-thrusting" Fiamignano normal fault: Bollettino della Società Geologica Italiana , v. 122, p. 267–276. Cerca con Google

Billi, A., Salvini, F., and Storti, F., 2003, The damage zone-fault core transition in carbonate rocks: Implications for fault growth, structure and permeability: Journal of Structural Geology, v. 25, p. 1779–1794, doi:10.1016/S0191-8141(03)00037-3. Cerca con Google

Billi, A., and Di Toro, G., 2008, Fault-related Carbonate rocks and earthquakes indicators: recent advances and future trends: Structural Geology: New Research, p. 1–24. Cerca con Google

Billi, A., 2010, Microtectonics of low-P low-T carbonate fault rocks: Journal of Structural Geology, v. 32, p. 1392–1402. Cerca con Google

Blumetti, A.M., 1995, Neotectonic investigations and evidence of paleoseismicity in the epicentral area of the January–February 1703, Central Italy, earthquakes: Perspectives in paleoseismology, v. 6, p. 83–100. Cerca con Google

Blumetti, A.M., and Guerrieri, L., 2007, Fault-generated mountain fronts and the identification of fault segments: Implications for seismic hazard assessment: Bollettino Società Geologica Italiana, v. 126, p. 307–322. Cerca con Google

Boschi, E., 1996, New trends in active faulting studies for seismic hazard assessment: Annals of Geophysics v. 39, p.6 Cerca con Google

Boschi, E., Guidoboni, E., Ferrari, G., Valensise, G., and Gasperini, P., 1997, Catalogue of the strong earthquakes in Italy from 461 BC to 1990: ING and SGA, Bologna, Italy, p. 973. Cerca con Google

Bosi, C., 1975, Osservazioni preliminari su faglie probabilmente attive nell’Appennino centrale: Bollettino della Società Geologica Italiana, v. 94, p. 827–859. Cerca con Google

Bosi, V., Funiciello, R., and Montone, P. Fault inversion: an example in central appennines (Italy): Il Quaternario, v. 7 p.577-588. Bosi, C., Galadini, F., Giaccio, B., Messina, P., and Sposato, A., 2003, Plio-Quaternary continental deposits in the Latium-Abruzzi Apennines: the correlation of geological events across different intermontane basins: Il Quaternario, v. 16, p. 55–76. Cerca con Google

Brune, J.N., and N., J., 2001, Fault-normal dynamic unloading and loading: An explanation for" non-gouge" rock powder and lack of fault-parallel shear bands along the San Andreas Fault: American Geophysical Union, Fall Meeting Abstracts. Cerca con Google

Bubeck, A., Wilkinson, M., Roberts, G.P., Cowie, P.A., McCaffrey, K.J.W., Phillips, R., and Sammonds, P., 2015, The tectonic geomorphology of bedrock scarps on active 96normal faults in the Italian Apennines mapped using combined ground penetrating radar and terrestrial laser scanning: Geomorphology, v. 237, p. 38–51, doi:10.1016/j.geomorph.2014.03.011. Cerca con Google

Buttinelli, M., Pezzo, G., Valoroso, L., De Gori, P., and Chiarabba, C., 2018, Tectonics Inversions, Fault Segmentation, and Triggering Mechanisms in the Central Apennines Normal Fault System: Insights From High-Resolution Velocity Models: Tectonics, v. 37, p. 4135–4149, doi:10.1029/2018tc005053. Cerca con Google

Caine, Jonathan, S., Evans, James, P., Forster, Craig, B., Caine, J.S., Evans, J.P., and Forster, C.B., 1996, Fault zone architecture and permeability structure (supplemental data): Geology, v. 24, p. 1049. Cerca con Google

Cardozo, N., and Allmendinger, R.W., 2013, Spherical projections with OSXStereonet: Computers & Geosciences, v. 51, p. 193–205, doi:10.1016/J.CAGEO.2012.07.021. Cerca con Google

Carminati, E., Lustrino, M., and Doglioni, C., 2012, Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints: Tectonophysics, v. 579, p. 173–192, doi:10.1016/j.tecto.2012.01.026. Cerca con Google

Carta Geologica d’Italia, 1955. 1:100000, 139, L’Aquila. Servizio Geologico d’Italia Cerca con Google

Centamore, E., Fumanti, F., and Nisio, S., 2002, The Central-Northern Apennines geological evolution from Triassic to Neogene time: Bollettino della Società Geologica Italiana, Volume Speciale, v. 1, p. 181–197. Cerca con Google

Chiarabba, C., Amato, A., Anselmi, M., Baccheschi, P., Bianchi, I., Cattaneo, M., ... & De Luca, G., The 2009 L'Aquila (Central Italy) MW6. 3 earthquake: Main shock and aftershocks: Geophysical Research Letters, v. 36, p. 1–6, doi:10.1029/2009GL039627. Cerca con Google

Chiaraluce, L., 2012, Unravelling the complexity of Apenninic extensional fault systems: A review of the 2009 L’Aquila earthquake (Central Apennines, Italy): Journal of Structural Geology, v. 42, p. 2–18, doi:10.1016/j.jsg.2012.06.007. Cerca con Google

Chiaraluce, L., Valoroso, L., Piccinini, D., Di Stefano, R., and De Gori, P., 2011, The anatomy of the 2009 L’Aquila normal fault system (Central Italy) imaged by high resolution foreshock and aftershock locations: Journal of Geophysical Research: Solid Earth, v. 116, p. 1–25, doi:10.1029/2011JB008352. Cerca con Google

Childs, C., Manzocchi, T., Walsh, J.J., Bonson, C.G., Nicol, A., and Scho, M.P.J., 2009, A geometric model of fault zone and fault rock thickness variations: v. 31, p. 117–127, doi:10.1016/j.jsg.2008.08.009. Cerca con Google

Choi, J.H., Edwards, P., Ko, K., and Kim, Y.S., 2016, Definition and lassification of fault damage zones: A review and a new methodological approach: Earth-Science Reviews, v. 152, p. 70–87, doi:10.1016/j.earscirev.2015.11.006. Cerca con Google

Clemenzi, L., Storti, F., Balsamo, F., Molli, G., Ellam, R., Muchez, P., and Swennen, R., 2015, Fluid pressure cycles, variations in permeability, and weakening mechanisms along low-angle normal faults: The Tellaro detachment, Italy: Bulletin, v. 127, p. 1689–1710. Cerca con Google

Cortinovis, S., Balsamo, F., Storti, F., La Valle, F., Fondriest, M., and Di Toro, G., 2018, Architecture and fault rocks of the seismogenic Monte Marine fault zone (Central Appennines, Italy), in Gruppo Nazionale di Geofisica della Terra Solida abstract, (GNGTS) 2018. Cerca con Google

Cowan, D.S., 1999, Do faults preserve a record of seismic slip? A field geologist’s opinion: Journal of Structural Geology, v. 21, p. 995–1001, doi:10.1016/j.jsg.2015.06.006. Cerca con Google

Cowie, P.A. et al., 2017, Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults: Scientific Reports, v. 7, doi:10.1038/srep44858. Cerca con Google

D’Agostino, N., Giuliani, R., Mattone, M., and Bonci, L., 2001, Active crustal extension in the central Apennines (Italy) inferred from GPS measurements in the interval 1994–1999: Geophysical Research Letters, v. 28, p. 2121–2124. Cerca con Google

Delle Piane, C., Clennell, M. Ben, Keller, J.V.A., Giwelli, A., and Luzin, V., 2017, Carbonate hosted fault rocks: A review of structural and microstructural characteristic with implications for seismicity in the upper crust: Journal of Structural Geology, v. 103, p. 17–36, doi:10.1016/j.jsg.2017.09.003. Cerca con Google

Demurtas, M., Fondriest, M., ... F.B.-J. of S., and 2016, undefined Structure of a normal seismogenic fault zone in carbonates: the Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy): Elsevier, https://www.sciencedirect.com/science/article/pii/S0191814116301067 (accessed March 2019). Vai! Cerca con Google

Demurtas, M., Fondriest, M., Balsamo, F., Clemenzi, L., Storti, F., Bistacchi, A., Di Toro, G., 2016, Structure of a normal seismogenic fault zone in carbonates: Structure of a normal seismogenic fault zone in carbonates: the Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy): Journal of Structural Geology, v. 90, p. 185–206, doi:10.1016/j.jsg.2016.08.004. Cerca con Google

Demurtas, M., Smith, S.A.F., Prior, D.J., Spagnuolo, E., and Di Toro, G., 2019a, Development of crystallographic preferred orientation during cataclasis in low-temperature carbonate fault gouge: Journal of Structural Geology, v. 126, p. 37–50, doi:https://doi.org/10.1016/j.jsg.2019.04.015. Vai! Cerca con Google

Demurtas M., Smith S., Prior D., Brenker F., Di Toro G., 2019b. Grain size sensitive creep during simulated seismic slip in nanogranular fault gouges: constraints from Transmission Kikuchi Diffraction (TKD). Journal of Geophysical Research 10.1029/2019JB018071. In press Cerca con Google

De Paola, N., Hirose, T., Mitchell, T., Di Toro, G., Viti, C., and Shimamoto, T., 2011, Fault lubrication and earthquake propagation in thermally unstable rocks: Geology, v. 39, p. 35–38, doi:10.1130/G31398.1. Cerca con Google

De Paola, N., Holdsworth, R.E., Viti, C., Collettini, C., and Bullock, R., 2015, Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation? Earth and Planetary Science Letters, v. 431, p. 48–58, doi:https://doi.org/10.1016/j.epsl.2015.09.002. Vai! Cerca con Google

Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., and Shimamoto, T., 2011, Fault lubrication during earthquakes: Nature, v. 471, p. 494, https://doi.org/10.1038/nature09838. Vai! Cerca con Google

Doan, M.L., Gary, G., and Andreas, S., 2009, Rock pulverization at high strain rate near the San Andreas Fault: Nature Geoscience, v. 2 p.709. Cerca con Google

Doglioni, C., 1991, A proposal for the kinematic modelling of W-dipping subductions - possible applications to the Tyrrhenian-Apennines system: Terra Nova, v. 3, p. 423–434, doi:10.1111/j.1365-3121.1991.tb00172.x. Cerca con Google

Doglioni, C., Gueguen, E., Harabaglia, P., and Mongelli, F., 1999, On the origin of west-directed subduction zones and applications to the western Mediterranean: Geological Society, London, Special Publications, v. 156, p. 541–561, doi:10.1144/gsl.sp.1999.156.01.24. Cerca con Google

Doglioni, C., Mongelli, F., and Pieri, P., 1994, Doglioni et al, 1994, The Puglia uplift (SE Italy). An anomoly in the foreland of the Apenninic subduction due to buckling of a thick continental lithosphere.pdf: v. 13, p. 1309–1321. Cerca con Google

Dor, O., Ben-Zion, Y., Rockwell, T.K., and Brune, J., 2006a, Pulverized rocks in the Mojave section of the San Andreas Fault Zone: Earth and Planetary Science Letters, v. 245, p. 642–654, doi:10.1016/j.epsl.2006.03.034. Cerca con Google

Dor, O., Rockwell, T.K., and Ben-Zion, Y., 2006b, Geological observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl faults in Southern California: a possible indicator for preferred rupture propagation direction: Pure and Applied Geophysics, v. 163, p. 301–349. Cerca con Google

Dor, O., Chester, J.S., Ben-Zion, Y., Brune, J.N., and Rockwell, T.K., 2009, Characterization of Damage in Sandstones along the Mojave Section of the San Andreas Fault: Implications for the Shallow Extent of Damage Generation, in Mechanics, Structure and Evolution of Fault Zones, Basel, Birkhäuser Basel, p. 1747–1773, doi:10.1007/978-3-0346-0138-2_10. Cerca con Google

Evans, J.P., 1990, Thickness-displacement relationships for fault zones: Journal of structural geology, v. 12, p. 1061–1065. Cerca con Google

Faccenna, C., Becker, T.W., Lucente, F.P., Jolivet, L., and Rossetti, F., 2001, History of subduction and back-arc extension in the central Mediterranean: Geophysical Journal International, v. 145, p. 809–820, doi:10.1046/j.0956-540X.2001.01435.x. Cerca con Google

Falcucci, E. et al., 2015, Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy: Tectonophysics, v. 651–652, p. 186–198, doi:10.1016/j.tecto.2015.03.021. Cerca con Google

Fang, Z., and Dunham, E.M., 2013, Additional shear resistance from fault roughness and stress levels on geometrically complex faults: Journal of Geophysical Research: Solid Earth, v. 118, p. 3642–3654. Cerca con Google

Faulkner, D.., Lewis, A.., and Rutter, E.., 2003, On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain: Tectonophysics, v. 367, p. 235–251, doi:10.1016/S0040-1951(03)00134-3. Cerca con Google

Faulkner, D.R., Mitchell, T.M., Rutter, E.H., and Cembrano, J., 2008, On the structure and mechanical properties of large strike-slip faults: Geological Society, London, Special Publications, v. 299, p. 139 LP – 150, doi:10.1144/SP299.9. Cerca con Google

Faulkner, D.R., Mitchell, T.M., Jensen, E., and Cembrano, J., 2011, Scaling of fault damage zones with displacement and the implications for fault growth processes: Journal of Geophysical Research: Solid Earth, v. 116, p. 1–11, doi:10.1029/2010JB007788. Cerca con Google

Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J., and Withjack, M.O., 2010, A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones: Journal of Structural Geology, v. 32, p. 1557–1575, doi:10.1016/j.jsg.2010.06.009. Cerca con Google

Faure Walker, J.P., Roberts, G.P., Sammonds, P.R., and Cowie, P., 2010, Comparison of earthquake strains over 102 and 104 year timescales: Insights into variability in the seismic cycle in the central Apennines, Italy: Journal of Geophysical Research: Solid Earth, v. 115, p. 1–26, doi:10.1029/2009JB006462. Cerca con Google

Ferraro, F., Grieco, D.S., Agosta, F., and Prosser, G., 2018, Space-time evolution of cataclasis in carbonate fault zones: Journal of Structural Geology, v. 110, p. 45–64, doi:10.1016/j.jsg.2018.02.007. Cerca con Google

Ferraro, F., Agosta, F., Ukar, E., Grieco, D.S., Cavalcante, F., Belviso, C., and Prosser, G., 2019, Structural diagenesis of carbonate fault rocks exhumed from shallow crustal depths: An example from the central-southern Apennines, Italy: Journal of Structural Geology, v. 122, p. 58–80, doi:10.1016/j.jsg.2019.02.008. Cerca con Google

Fondriest, M., Aretusini, S., Di Toro, G., and Smith, S.A.F., 2015, Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy): Tectonophysics, v. 654, p. 56–74, doi:10.1016/j.tecto.2015.04.015. Cerca con Google

Fondriest, M., Doan, M.L., Aben, F., Fusseis, F., Mitchell, T.M., Voorn, M., Secco, M., and Di Toro, G., 2017, Static versus dynamic fracturing in shallow carbonate fault zones: Earth and Planetary Science Letters, v. 461, p. 8–19, doi:10.1016/j.epsl.2016.12.024. Cerca con Google

Fondriest, M., Smith, S.A.F., Mair, K., Nielsen, S.B., Candela, T., and Di Toro, G., 2013, Mirror-like faults and power dissipation during earthquakes: Geology, v. 41, p. 1175–1178, doi:10.1130/g34641.1. Cerca con Google

Fondriest, M., Smith, S.A.F., Di Toro, G., Zampieri, D., and Mittempergher, S., 2012, Fault zone structure and seismic slip localization in dolostones, an example from the Southern Alps, Italy: Journal of Structural Geology, v. 45, p. 52–67, doi:10.1016/J.JSG.2012.06.014. Cerca con Google

Fossen, H., 2016, Structural geology: Cambridge University Press. Cerca con Google

Fracassi, U., 2001, Morphotectonic signature of the Campo Imperatore Quaternary basin (Central Apennines): implications for the seismotectonics of Central Italy, Unpublished Ph. D. thesis Cerca con Google

Galadini, F., and Galli, P., 2000, Active tectonics in the Central Appennines (Italy) - Input data for seismic hazard assessment: Natural Hazards, v. 22, p. 225–270, doi:10.1023/A:1008149531980. Cerca con Google

Galadini, F., and Galli, P., 1999, The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (central Italy): Implications for active tectonics in the central Apennines: Tectonophysics, v. 308, p. 143–170, doi:10.1016/S0040-1951(99)00091-8. Cerca con Google

Galadini, F., and Messina, P., 2001, Plio-Quaternary changes of the normal fault architecture in the central Apennines (Italy): Geodinamica Acta, v. 14, p. 321–344. Cerca con Google

Galli, P.A.C., Giaccio, B., Messina, P., Peronace, E., and Zuppi, G.M., 2011, Palaeoseismology of the L’Aquila faults (central Italy, 2009, Mw 6.3 earthquake): Implications for active fault linkage: Geophysical Journal International, v. 187, p. 1119–1134, doi:10.1111/j.1365-246X.2011.05233.x. Cerca con Google

Gasperi, G., 1995, Geologia regionale: circummediterranee: Pitagora editrice. Geologia dell’Italia e delle regioni Cerca con Google

Ghisetti, F., and Vezzani, L., 1999, Depth and modes of Pliocene-Pleistocene crustal extension of the Apennines (Italy): Terra Nova, v. 11, p. 67–72, doi:10.1046/j.1365-3121.1999.00227.x. Cerca con Google

Ghisetti, F., and Vezzani, L., 2002, Normal faulting, extension and uplift in the outer thrust belt of the central Apennines (Italy): Role of the Caramanico fault: Basin Research, v. 14, p. 225–236, doi:10.1046/j.1365-2117.2002.00171.x. Cerca con Google

Green, A.A., and Craig, M.D., 1985, Analysis of aircraft spectrometer data with logarithmic residuals. Cerca con Google

Green II, H.W., Shi, F., Bozhilov, K., Xia, G., and Reches, Z., 2015, Phase transformation and nanometric flow cause extreme weakening during fault slip: Nature Geoscience, v. 8, p. 484, https://doi.org/10.1038/ngeo2436. Vai! Cerca con Google

Gudmundsson, A., Simmenes, T.H., Larsen, B., and Philipp, S.L., 2010, Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones: Journal of Structural Geology, v. 32, p. 1643–1655. Cerca con Google

Gueguen, E., Doglioni, C., and Fernandez, M., 1998, On the post-25 Ma geodynamic evolution of the western Mediterranean: Tectonophysics, v. 298, p. 259–269, doi:10.1016/S0040-1951(98)00189-9. Cerca con Google

Gupta, A., and Scholz, C.H., 2000, A model of normal fault interaction based on observations and theory: Journal of Structural Geology, v. 22, p. 865–879, doi:10.1016/S0191-8141(00)00011-0. Cerca con Google

Han, R., Hirose, T., and Shimamoto, T., 2010, Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates: Journal of Geophysical Research: Solid Earth, v. 115, doi:10.1029/2008JB006136. Cerca con Google

Han, R., Shimamoto, T., Hirose, T., Ree, J.-H., and Ando, J., 2007, Ultralow Friction of Carbonate Faults: Science, v. 316, p. 878–880. Cerca con Google

Hunstad, I., Selvaggi, G., D’Agostino, N., England, P., Clarke, P., and Pierozzi, M., 2003, Geodetic strain in peninsular Italy between 1875 and 2001: Geophysical Research Letters, v. 30, p. 1–4, doi:10.1029/2002GL016447. Cerca con Google

Jackson, J., and McKenzie, D., 1999, A hectare of fresh striations on the Arkitsa fault, central Greece: Journal of Structural Geology, v. 21, p. 1–6, doi:10.1016/S0191-8141(98)00091-1. Cerca con Google

Kamb, W.B., 1959, Ice petrofabric observation from blue glacier, Washington, in relation to theory and experiment: Journal of geophysical research, v. 54. Cerca con Google

Kim, Y.S., Peacock, D.C.P., and Sanderson, D.J., 2004, Fault damage zones: Journal of Structural Geology, v. 26, p. 503–517, doi:10.1016/j.jsg.2003.08.002. Cerca con Google

Kim, Y.S., and Sanderson, D.J., 2005, The relationship between displacement and length of faults: A review: Earth-Science Reviews, doi:10.1016/j.earscirev.2004.06.003. Cerca con Google

Lavecchia, G., de Nardis, R., Cirillo, D., Brozzetti, F., and Boncio, P., 2012, The May-June 2012 Ferrara Arc earthquakes (northern Italy): structural control of the spatial evolution of the seismic sequence and of the surface pattern of coseismic fractures: Annals of Geophysics, v. 55. Cerca con Google

Leah, H., Fondriest, M., Lucca, A., Storti, F., Balsamo, F., and Di Toro, G., 2018, Coseismic extension recorded within the damage zone of the Vado di Ferruccio Thrust Fault, Central Apennines, Italy: Journal of Structural Geology, v. 114, p. 121–138, doi:10.1016/j.jsg.2018.06.015. Cerca con Google

Li, Y.-G., and Leary, P.C., 1990, Fault zone trapped seismic waves: Bulletin of the Seismological Society of America, v. 80, p. 1245–1271. Cerca con Google

Lustrino, M., Morra, V., Fedele, L., and Franciosi, L., 2009, Beginning of the Apennine subduction system in central western Mediterranean: Constraints from Cenozoic “orogenic” magmatic activity of Sardinia, Italy: Tectonics, v. 28, p. 1–23, doi:10.1029/2008TC002419. Cerca con Google

Ma, S., and Andrews, D.J., 2010, Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault: Journal of Geophysical Research, v. 115, p. 1–16, doi:10.1029/2009jb006382. Cerca con Google

Maceroni, D., Racano, S., Falcucci, E., and Gori, S., 2018, Application of quaternary studies for the assessment of active and capable faults in the central Apennines : Implications for microzonation and seismotectonic analyses. Cerca con Google

Machette, M.N., 2000, Active, capable, and potentially active faults - a paleoseismic perspective: Journal of Geodynamics, v. 29, p. 387–392, doi:10.1016/S0264-3707(99)00060-5. Cerca con Google

Malinverno, A., and Ryan, W.B.F., 1986, Exthension in the Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere: Tectonics, v. 5, p. 227–245. Cerca con Google

Manighetti, I., King, G., and Sammis, C.G., 2004, The role of off-fault damage in the evolution of normal faults: Earth and Planetary Science Letters, v. 217, p. 399–408, doi:10.1016/S0012-821X(03)00601-0. Cerca con Google

Marrett, R., and Allmendinger, R.W., 1990, Kinematic analysis of fault-slip data: Journal of Structural Geology, v. 12, p. 973–986, doi:10.1016/0191-8141(90)90093-E. Cerca con Google

Mayolle, S., Soliva, R., Caniven, Y., Wibberley, C., Ballas, G.G., Milesi, G., and Cerca con Google

Dominguez, S.S., 2019, Scaling of fault damage zones in carbonate rocks: Journal of Structural Geology, v. 124, p. 35–50, doi:10.1016/j.jsg.2019.03.007. Cerca con Google

Micarelli, L., Benedicto, A., and Wibberley, C.A.J., 2006, Structural evolution and permeability of normal fault zones in highly porous carbonate rocks: Journal of Structural Geology, v. 28, p. 1214–1227, doi:10.1016/j.jsg.2006.03.036. Cerca con Google

Michetti, A.M., Brunamonte, F., Serva, L., and Vittori, E., 1996, Trench investigations of the 1915 Fucino earthquake fault scarps (Abruzzo, Central Italy): geological evidence of large historical events: Journal of Geophysical Research: Solid Earth, v. 101, p. 5921–5936. Cerca con Google

Michetti, A.M., Serva, L., and Vittori, E., 2000, ITHACA (Italy hazard from Capable Faulting), a database of active capable faults of the Italian onshore territory: Database on CD-ROM, Int. Rep. of ANPA (Agenzia Nazionale Protezione Ambiente). Cerca con Google

Michie, E.A.H. et al., 2014, Influence of carbonate facies on fault zone architecture: Journal of Structural Geology, v. 65, p. 82–99, doi:10.1016/j.jsg.2014.04.007. Cerca con Google

Mitchell, T.M., Ben-Zion, Y., and Shimamoto, T., 2011, Pulverized fault rocks and damage asymmetry along the Arima-Takatsuki Tectonic Line, Japan: Earth and Planetary Science Letters, v. 308, p. 284–297, doi:10.1016/j.epsl.2011.04.023. Cerca con Google

Mitchell, T.M., and Faulkner, D.R., 2009, The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile: Journal of Structural Geology, v. 31, p. 802–816, doi:10.1016/j.jsg.2009.05.002. Cerca con Google

Morelli, L.A., Bonardi, G., Colonna, V., and Dietrich, D., 1976, L’arco calabro-peloritano nell’orogene appenninico-maghrebide. Cerca con Google

Morewood, N.C., and Roberts, G.P., 2000, The geometry, kinematics and rates of deformation within an en echelon normal fault segment boundary, central Italy: Journal of Structural Geology, v. 22, p. 1027–1047, doi:10.1016/S0191-8141(00)00030-4. Cerca con Google

Moro, M., Bosi, V., Galadini, F., Galli, P., Giaccio, B., Messina, P., and Sposato, A., 2002, Cerca con Google

Analisi paleosismologiche lungo la faglia del M. Marine (alta Valle dell’Aterno): Cerca con Google

risultati preliminari: Il Quaternario, v. 15, p. 267–278. Cerca con Google

Moro, M., Moro, M., Falcucci, E., Gori, S., Saroli, M., and Galadini, F., 2016, New paleoseismic data across the Mt. Marine Fault between the 2016 Amatrice and 2009 L’Aquila seismic sequences (central Apennines): Annals of Geophysics, v. 59, p. 1–7, doi:10.4401/ag-7260. Cerca con Google

Nielsen, S., Spagnuolo, E., Smith, S.A.F., Violay, M., Di Toro, G., and Bistacchi, A., 2016, Scaling in natural and laboratory earthquakes: Geophysical Research Letters, v. 43, p. 1504–1510. Cerca con Google

Okubo, K., Bhat, H.S., Rougier, E., Marty, S., Schubnel, A., Lei, Z., Knight, E.E., and Klinger, Y., 2019, Dynamics, radiation and overall energy budget of earthquake rupture with coseismic off-fault damage: Journal of Geophysical Research: Solid Earth, p. 1–43, doi:10.1029/2019jb017304. Cerca con Google

Pace, P., Domenica, A. Di, and Calamita, F., 2014, Summit low-angle faults in the Central Apennines of Italy: Younger-on-older thrusts or rotated normal faults? Constraints for defining the tectonic style of thrust belts: Tectonics, v. 33, p. 756–785, doi:10.1002/2013TC003385. Cerca con Google

Papanikolaou, I.D., Roberts, G.P., and Michetti, A.M., 2005, Fault scarps and deformation rates in Lazio-Abruzzo, Central Italy: Comparison between geological fault slip-rate and GPS data: Tectonophysics, v. 408, p. 147–176, doi:10.1016/j.tecto.2005.05.043. Cerca con Google

Patacca, E., Sartori, R., and Scandone, P., 1990, Tyrrhenian basin and Apenninc arcs: kinematic relations since Late Tortonian times.: Mem. Soc. Geol. It, v. 45, p. 425–451. Cerca con Google

Peacock, D.C.P., Dimmen, V., Rotevatn, A., and Sanderson, D.J., 2017, A broader classification of damage zones: Journal of Structural Geology, v. 102, p. 179–192, doi:10.1016/j.jsg.2017.08.004. Cerca con Google

Peacock, D.C.P., Knipe, R.J., and Sanderson, D.J., 2000, Glossary of normal faults: Journal of Structural Geology, v. 22, p. 291–305, doi:10.1016/S0191-8141(00)80102-9. Cerca con Google

Perrin, C., Manighetti, I., and Gaudemer, Y., 2016, Off-fault tip splay networks: A genetic and generic property of faults indicative of their long-term propagation: Comptes Rendus - Geoscience, v. 348, p. 52–60, doi:10.1016/j.crte.2015.05.002. Cerca con Google

Pizzi, A., and Galadini, F., 2009, Pre-existing cross-structures and active fault segmentation in the northern-central Apennines (Italy): Tectonophysics, v. 476, p. 304–319, doi:10.1016/j.tecto.2009.03.018. Cerca con Google

Power, W., and Tullis, T., 1989, The relationship between slickenside surfaces in fine-grained quartz and the seismic cycle: Journal of Structural Geology, v. 11, p. 879–893. Cerca con Google

Pozzi, G., De Paola, N., Nielsen, S.B., Holdsworth, R.E., and Bowen, L., 2018, A new interpretation for the nature and significance of mirror-like surfaces in experimental carbonate-hosted seismic faults: Geology, v. 46, p. 583–586, doi:10.1130/G40197.1. Cerca con Google

Rempe, M., Mitchell, T.M., Renner, J., Smith, S.A.F., Bistacchi, A., and Di Toro, G., 2018, The Relationship Between Microfracture Damage and the Physical Properties of Fault-Related Rocks: The Gole Larghe Fault Zone, Italian Southern Alps: Journal of Geophysical Research: Solid Earth, v. 123, p. 7661–7687. Cerca con Google

Roberts, G.P., and Michetti, A.M., 2004, Spatial and temporal variations in growth rates along active normal fault systems: An example from The Lazio-Abruzzo Apennines, central Italy: Journal of Structural Geology, v. 26, p. 339–376, doi:10.1016/S0191-8141(03)00103-2. Cerca con Google

Rovida, A., Locati, M., Camassi, R., and Lolli, B., 2016, CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Cerca con Google

Rowe, C.D., and Griffith, W.A., 2015, Do faults preserve a record of seismic slip: A second opinion: Journal of Structural Geology, v. 78, p. 1–26, doi:10.1016/j.jsg.2015.06.006. Cerca con Google

Salvini, F., Billi, A., and Wise, D.U., 1999, Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata Fault Zone, Southern Apennines, Italy: Journal of Structural Geology, v. 21, p. 1731–1749. Cerca con Google

Saroli, M. et al., 2008, Nuovi Dati Paleosismologici Dal Settore Orientale Del Bacino Del Fucino ( Italia Centrale ): Italian Journal of Quaternary Sciences, v. 21, p. 383–394. Cerca con Google

Savage, H.M., and Brodsky, E.E., 2011, Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones: Journal of Geophysical Research: Solid Earth, v. 116, p. 1–14, doi:10.1029/2010JB007665. Cerca con Google

Scholz, C.H., 2019, The mechanics of earthquakes and faulting: Cambridge university press. Cerca con Google

Scholz, C.H., Dawers, N.H., Yu, J., Anders, M.H., and Cowie, P.A., 1993, Fault growth and fault scaling laws: preliminary results: Journal of Geophysical Research: Solid Earth, v. 98, p. 21951–21961. Cerca con Google

Schröckenfuchs, T., Bauer, H., Grasemann, B., and Decker, K., 2015, Rock pulverization and localization of a strike-slip fault zone in dolomite rocks (Salzach-Ennstal-Mariazell-Puchberg fault, Austria): Journal of Structural Geology, v. 78, p. 67–85, doi:10.1016/j.jsg.2015.06.009. Cerca con Google

Shipton, Z.K., and Cowie, P.A., 2001, Damage zone and slip-surface evolution over μm to km scales in high-porosity Navajo sandstone, Utah: Journal of Structural Geology, doi:10.1016/S0191-8141(01)00035-9. Cerca con Google

Shipton, Z.K., and Cowie, P.A., 2003, A conceptual model for the origin of fault damage zone structures in high-porosity sandstone: Journal of Structural Geology, v. 25, p. 333–344, doi:https://doi.org/10.1016/S0191-8141(02)00037-8. Vai! Cerca con Google

Shipton, Z.K., Evans, J.P., Abercrombie, R.E., and Brodsky, E.E., 2006a: The missing sinks slip localization in faults, damage zones, and the seismic energy budget. Cerca con Google

Shipton, Z.K., Evans, J.P., and Thompson, L.B., 2005, The geometry and thickness of deformation-band fault core and its influence on sealing characteristics of deformation-band fault zones: Cerca con Google

Shipton, Z.K., Soden, A.M., Kirkpatrick, J.D., Bright, A.M., and Lunn, R.J., 2006b, How thick is a fault? Fault displacement-thickness scaling revisited. Cerca con Google

Sibson, R.H., 1977, Fault rocks and fault mechanisms: Journal of the Geological Society, v. 133, p. 191–213, doi:10.1144/gsjgs.133.3.0191. Cerca con Google

Sibson, R.H., 1985, Stopping of earthquake ruptures at dilational fault jogs: Nature, v. 316, p. 248–251, doi:10.1038/316248a0. Cerca con Google

Sibson, R.H., 1986, Brecciation processes in fault zones: Inferences from earthquake rupturing: Pure and Applied Geophysics PAGEOPH, v. 124, p. 159–175, doi:10.1007/BF00875724. Cerca con Google

Sibson, R.H., 2003, Thickness of the seismic slip zone: Bulletin of the Seismological Society of America, v. 93, p. 1169–1178, doi:10.1785/0120020061. Cerca con Google

Siman-Tov, S., Aharonov, E., Boneh, Y., and Reches, Z., 2015, Fault mirrors along carbonate faults: Formation and destruction during shear experiments: Earth and Planetary Science Letters, v. 430, p. 367–376, doi:10.1016/j.epsl.2015.08.031. Cerca con Google

Siman-Tov, S., Aharonov, E., Sagy, A., and Emmanuel, S., 2013, Nanograins form carbonate fault mirrors: Geology, v. 41, p. 703–706, doi:10.1130/G34087.1. Cerca con Google

Smith, S.A.F., Billi, A., di Toro, G., and Spiess, R., 2011, Principal Slip Zones in Limestone: Microstructural Characterization and Implications for the Seismic Cycle (Tre Monti Fault, Central Apennines, Italy): Pure and Applied Geophysics, v. 168, p. 2365–2393, doi:10.1007/s00024-011-0267-5. Cerca con Google

Smith, S.A.F., Di Toro, G., Kim, S., Ree, J.H., Nielsen, S., Billi, A., and Spiess, R., 2013, Coseismic recrystallization during shallow earthquake slip: Geology, v. 41, p. 63–66, doi:10.1130/G33588.1. Cerca con Google

Smith, S.A.F., Nielsen, S., and Di Toro, G., 2015, Strain localization and the onset of dynamic weakening in calcite fault gouge: Earth and Planetary Science Letters, v. 413, p. 25–36, doi:https://doi.org/10.1016/j.epsl.2014.12.043. Vai! Cerca con Google

Soliva, R., Benedicto, A., and Maerten, L., 2006, Spacing and linkage of confined normal faults: importance of mechanical thickness: Journal of Geophysical Research: Solid Earth, v. 111. Cerca con Google

Spagnuolo, E., Plümper, O., Violay, M., Cavallo, A., and Di Toro, G., 2015, Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes: Scientific Reports, v. 5, p. 16112, https://doi.org/10.1038/srep16112. Vai! Cerca con Google

Tarasewicz, J.P.T., Woodcock, N.H., and Dickson, J.A.D., 2005, Carbonate dilation breccias: Examples from the damage zone to the Dent Fault, northwest England: Bulletin of the Geological Society of America, doi:10.1130/B25568.1. Cerca con Google

Torabi, A., and Berg, S.S., 2011, Scaling of fault attributes: A review: Marine and Petroleum Geology, v. 28, p. 1444–1460, doi:10.1016/j.marpetgeo.2011.04.003. Cerca con Google

Traforti, A., Mari, G., Carli, C., Demurtas, M., Massironi, M., and Di Toro, G., 2017, VNIR reflectance spectroscopy of natural carbonate rocks: implication for remote sensingidentification of fault damage zones: EGU General Assembly, v. 19, p. 7935. Cerca con Google

Valoroso, L., Chiaraluce, L., Piccinini, D., Di Stefano, R., Schaff, D., and Waldhauser, F., 2013, Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case study: Journal of Geophysical Research: Solid Earth, v. 118, p. 1156–1176, doi:10.1002/jgrb.50130. Cerca con Google

Verberne, B.A., de Bresser, J.H.P., Niemeijer, A.R., Spiers, C.J., de Winter, D.A.M., and Plümper, O., 2013, Nanocrystalline slip zones in calcite fault gouge show intense crystallographic preferred orientation: Crystal plasticity at sub-seismic slip rates at 18–150 C: Geology, v. 41, p. 863–866. Cerca con Google

Verberne, B.A., Spiers, C.J., Plümper, O., De Winter, D.A.M., and Spiers, C.J., 2014, Supplementary Materials for Superplastic nanofibrous slip zones control seismogenic fault friction: Science, v. 346, p. 1342–1344, doi:10.1126/science.1259003. Cerca con Google

Vermilye, J.M., and Scholz, C.H., 1998, The process zone: A microstructural view of fault growth: Journal of Geophysical Research: Solid Earth, v. 103. p. 12223-12237. Cerca con Google

Vezzani, L., Festa, A., and Ghisetti, F.C., 2010, Geology and Tectonic Evolution of the Central-Southern Apennines, Italy: Geological Society of America , p. 1–58, doi:10.1130/2010.2469. Cerca con Google

Vezzani, L., Ghisetti, F., Bigozzi, A., Follador, U., and Casnedi, R., 1998, Carta geologica dell’Abruzzo: scala 1: 100.000: Selca. Cerca con Google

Walsh, J.J., and Watterson, J., 1988, Analysis of the relationship between displacements and dimensions of faults: Journal of Structural Geology, v. 10, p. 239–247, doi:10.1016/0191-8141(88)90057-0. Cerca con Google

Wechsler, N., Allen, E.E., Rockwell, T.K., Girty, G., Chester, J.S., and Ben-Zion, Y., 2011, Characterization of pulverized granitoids in a shallow core along the San Andreas Fault, Littlerock, CA: Geophysical Journal International, v. 186, p. 401–417, doi:10.1111/j.1365-246X.2011.05059.x. Cerca con Google

Wesnousky, S.G., 2006, Predicting the endpoints of earthquake ruptures: Nature, v. 444, p. 358–360, doi:10.1038/nature05275. Cerca con Google

Wibberley, C.A.J., Yielding, G., and Di Toro, G., 2008, Recent advances in the understanding of fault zone internal structure: a review: Geological Society, London, Special Publications, v. 299, p. 5–33, doi:10.1144/sp299.2. Cerca con Google

Wilkinson, M., Roberts, G.P., McCaffrey, K., Cowie, P.A., Walker, J.P.F., Papanikolaou, I., Phillips, R.J., Michetti, A.M., Vittori, E., and Gregory, L., 2015, Slip distributions on active normal faults measured from LiDAR and field mapping of geomorphic offsets: an example from L’Aquila, Italy, and implications for modelling seismic moment release: Geomorphology, v. 237, p. 130–141. Cerca con Google

Woodcock, N.H., and Mort, K., 2008, Classification of fault breccias and related fault rocks: Geological Magazine, v. 145, p. 435–440, doi:10.1017/S0016756808004883. Cerca con Google

Yuan, F., Prakash, V., and Tullis, T., 2011, Origin of pulverized rocks during earthquake fault rupture: Journal of Geophysical Research: Solid Earth, v. 116, p. 1–18, doi:10.1029/2010JB007721. Cerca con Google

References of the catalogue Cerca con Google

Carta geologica d’Italia alla scala 1:50.000, foglio 368 Avezzano. Cerca con Google

Carta geologica d’Italia alla scala 1:50.000, foglio 369 Sulmona. Cerca con Google

Carta geologica d’Italia alla scala 1:50.000, foglio 378 Scanno. Cerca con Google

Carta geologica d’Italia alla scala 1:50.000, foglio 359 L’Aquila Cerca con Google

Agosta F. and Aydin A., Architecture and deformation mechanism of a basin-bounding normal fault in mesozoic platform carbonates, central Italy. Journal of Structural Geology, 28(8):1445–1467, 2006. Cerca con Google

Agosta F. and Kirschner, Fluid conduits in carbonate-hosted seismogenic normal faults of central Italy. Journal of Geophysical Research: Solid Earth, 108(B4), 2003. Cerca con Google

Barchi M., Lavecchia G. , Galadini F., Messina P., Michetti A., Peruzza L., Pizzi A., Tondi E., Vittori E., Sintesi delle conoscenze sulle faglie attive in italia Centrale: parametrizzazione ai fini della caratterizzazione della pericolosita` sismica. 2000. Cerca con Google

Billi A., Di Toro G., Landowe S.J., Hammlerp G.M., Fault-related carbonate rocks and earthquake indicators: recent advances and future trends. Structural Geology: New Research, pages 63–86, 2008. Cerca con Google

Blumetti A.M., Guerrieri L., Fault-generated mountain fronts and the identification of fault segments: implications for seismic hazard assessment. Bollettino della Società Geologica Italiana, 126(2):307, 2007. Cerca con Google

Bubeck A.,Wilkinson M., Roberts G.P., Cowie P.A., McCaffrey K.J.W., Phillips R., Sammonds P., The tectonic geomorphology of bedrock scarps on active normal faults in the italian apennines mapped using combined ground penetrating radar and terrestrial laser scanning. Geomorphology, 237:38–51, 2015. Cerca con Google

Cavinato G.P., Carusi C., Dall’Asta M., Miccadei E., Piacentini T., Sedimentary and tectonic evolution of plio–pleistocene allu- vial and lacustrine deposits of Fucino basin (Central Italy). Sedimentary Geology, 148(1-2):29–59, 2002. Cerca con Google

Chiarabba C., Amato A., Anselmi M., Baccheschi P., Bianchi I., Cattaneo M., Cecere G., Chiaraluce L., Ciaccio M.G., De Gori P., et al., The 2009 l’aquila (Central Italy) mw6. 3 earthquake: Main shock and aftershocks. Geophysical Research Letters, 36(18), 2009. Cerca con Google

Cortinovis S., Balsamo F., Storti F., Di Toro G., Architecture and microstructural properties of the seismogenetic monte marine extensional fault affecting partially dolomitized carbonate rocks, Central Apennines (Italy). In EGU General Assembly Conference Abstracts, 20:12655, 2018. Cerca con Google

Demurtas M., Fondriest M., Balsamo F., Clemenzi L., Storti F., Bistacchi A., Di Toro G., Structure of a normal seismoge- nic fault zone in carbonates: the Vado di Corno fault, Campo Imperatore, Central Apennines (Italy). Journal of Structural Geology, 90:185–206, 2016. Cerca con Google

Galadini F. and Galli P., Active tectonics in the Central Apennines (Italy)– input data for seismic hazard assessment. Natural Hazards, 22(3):225–268, 2000. Cerca con Google

Falcucci E., Gori S., Moro M., Fubelli G., Saroli M., Chiarabba C., Galadini F., Deep reaching versus vertically restricted quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, Central Italy. Tectonophysics, 651:186– 198, 2015. Cerca con Google

Faure Walker J.P., Roberts G.P., Sammonds P.R., Cowie P., Comparison of earthquake strains over 102 and 104 year timescales: Insights into variability in the seismic cycle in the Central apennines, Italy. Journal of Geophysical Research: Solid Earth, 115(B10), 2010. Cerca con Google

Ferraro F., Grieco D.S., Agosta F., Prosser G., Space-time evolution of cataclasis in carbonate fault zones. Journal of Structural Geology, 110:45–64, 2018. Cerca con Google

Galadini F., Archaeoseismology in Italy: case studies and implications on long-term seismicity. Journal of Earthquake Engineering, 5:35–68, 2001. Cerca con Google

Galadini F. and Galli P., The holocene paleoearthquakes on the 1915 Avezzano earthquake faults (Central Italy): implications for active tectonics in the Central apennines. Tectonophysics, 308(1-2):143–170, 1999. Cerca con Google

Galli P., Galadini F., Moro M., Giraudi C., New paleoseismological data from the Gran Sasso d’Italia area (Central Apennines). Geophysical Research Letters, 29(7):38–1, 2002. Cerca con Google

Galli P., Giaccio B., Messina P., Peronace E., Zuppi G.M., Palaeoseismology of the L’Aquila faults (Central Italy, 2009, Mw 6.3 earthquake): Implications for active fault linkage. Geophysical Journal International, 187(3):1119–1134, 2011. Cerca con Google

Ghisetti F. and Vezzani L., Thrust belt development in the Central apen- nines (Italy): Northward polarity of thrusting and out-of-sequence deformations in the Gran Sasso chain. Tectonics, 10(5):904–919, 1991. Cerca con Google

Gori S., Giaccio B., Galadini F., Falcucci E., Messina P., Sposato A., Dramis F., Active normal faulting along the mt. morrone south-western slopes (Central Apennines, Italy). International journal of earth sciences, 100(1):157–171, 2011. Cerca con Google

Miccadei E., Paron P, Piacentini T., The sw escarpment of the montagna del Morrone (Abruzzi, Central Italy): geomorphology of a faulted- generated mountain front. Geografia Fisica e Dinamica Quaternaria, 27(1):55–87, 2004. Cerca con Google

Morewood N. and Roberts G., The geometry, kinematics and rates of deformation within an en ́ echelon normal fault segment boundary, Central Italy. Journal of Structural Geology, 22(8):1027–1047, 2000. Cerca con Google

Moro M., Falcucci E., Gori S., Saroli M., Galadini F., New paleoseismic data across the Mt. Marine fault between the 2016 Amatrice and 2009 L’Aquila seismic sequences (Central Apennines). Annals of geophisycs, 2016. Cerca con Google

Papanikolaou I.D., Roberts G.P., Michetti A.M., Fault scarps and deformation rates in Lazio–Abruzzo, Central Italy: Comparison between geological fault slip-rate and gps data. Tectonophysics, 408(1-4):147–176, 2005. Cerca con Google

Piccardi P., Gaudemer Y., Tapponnier P., Boccaletti M., Active oblique extension in the Central apennines (Italy): Evidence from the fucino region. Geophysical Journal International, 139:499 – 530, 11 1999. Cerca con Google

Roberts G.P., and Michetti A.M., Spatial and temporal variations in growth rates along active normal fault systems: an example from the lazio–abruzzo apennines, Central Italy. Journal of Structural Geology, 26(2):339–376, 2004. Cerca con Google

Vezzani L. and Ghisetti F., Carta geologica dell’Abruzzo: scala 1: 100,000. 1998. Cerca con Google

Working Group DISS. Database of individual seismogenic sources (DISS), version 3.2.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas, 2018. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record