Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Stefanini, Camilla (2019) TetTag technology and the RAM system: activity-dependent neuronal marking from a circadian perspective. [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF
2646Kb

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Biologia molecolare
Uncontrolled Keywords:Neuronal tagging
Subjects:Area 05 - Scienze biologiche > BIO/10 Biochimica
Codice ID:63482
Relatore:Leanza, Luigi
Correlatore:Brown, Steven A.
Data della tesi:2019
Biblioteca:Polo di Scienze > CIS "A. Vallisneri" - Biblioteca Biologico Medica
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Abe, M., Herzog, E. D., Yamazaki, S., Straume, M., Tei, H., Sakaki, Y., … Block, G. D. (2002). Circadian rhythms in isolated brain regions. Journal of Neuroscience, 22(1), 350–356. Cerca con Google

Achermann, P., Dijk, D. J., Brunner, D. P., & Borbély, A. A. (1993). A model of human sleep homeostasis based on EEG slow-wave activity: Quantitative comparison of data and simulations. Brain Research Bulletin, 31(1–2), 97–113. https://doi.org/10.1016/0361-9230(93)90016-5 Vai! Cerca con Google

Antle, M. C., Kriegsfeld, L. J., & Silver, R. (2005). Signaling within the master clock of the brain: Localized activation of mitogen-activated protein kinase by gastrin-releasing peptide. Journal of Neuroscience, 25(10), 2447–2454. https://doi.org/10.1523/JNEUROSCI.4696-04.2005 Vai! Cerca con Google

Bach, D. R., Tzovara, A., & Vunder, J. (2018). Blocking human fear memory with the matrix metalloproteinase inhibitor doxycycline. Molecular Psychiatry, 23(7), 1584–1589. https://doi.org/10.1038/mp.2017.65 Vai! Cerca con Google

Bejar, R., Yasuda, R., Krugers, H., Hood, K., & Mayford, M. (2002). Transgenic calmodulin-dependent protein kinase II activation: Dose-dependent effects on synaptic plasticity, learning, and memory. Journal of Neuroscience, 22(13), 5719–5726. Cerca con Google

Borbély, A. A., Daan, S., Wirz-Justice, A., & Deboer, T. (2016). The two-process model of sleep regulation: A reappraisal. Journal of Sleep Research, 25(2), 131–143. https://doi.org/10.1111/jsr.12371 Vai! Cerca con Google

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8(9), 1263–1268. https://doi.org/10.1038/nn1525 Vai! Cerca con Google

C. Hanlon, E., V. Vyazovskiy, V., Faraguna, U., Tononi, G., & Cirelli, C. (2012). Synaptic Potentiation and Sleep Need: Clues from Molecular and Electrophysiological Studies. Current Topics in Medicinal Chemistry, 11(19), 2472–2482. https://doi.org/10.2174/156802611797470312 Vai! Cerca con Google

Collins, B. (n.d.). 8 3010. Cox, J., Pinto, L., & Dan, Y. (2016). Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nature Communications, 7(May 2015), 1–7. https://doi.org/10.1038/ncomms10763 Vai! Cerca con Google

Davis, P., Zaki, Y., Maguire, J., & Reijmers, L. G. (2017). Cellular and oscillatory substrates of fear extinction learning. Nature Neuroscience, 20(11), 1624–1633. https://doi.org/10.1038/nn.4651 Vai! Cerca con Google

Deng, W., Mayford, M., & Gage, F. H. (2013). Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. ELife, 2013(2), 1–21. https://doi.org/10.7554/eLife.00312 Vai! Cerca con Google

Dimou, L., & Götz, M. (2014). Glial cells as progenitors and stem cells: New roles in the healthy and diseased brain. Physiological Reviews, 94(3), 709–737. https://doi.org/10.1152/physrev.00036.2013 Vai! Cerca con Google

Dobrzanski, G., & Kossut, M. (2017). Application of the DREADD technique in biomedical brain research. Pharmacological Reports, 69(2), 213–221. https://doi.org/10.1016/j.pharep.2016.10.015 Vai! Cerca con Google

Dogbevia, G. K., Marticorena-Alvarez, R., Bausen, M., Sprengel, R., & Hasan, M. T. (2015). Inducible and combinatorial gene manipulation in mouse brain. Frontiers in Cellular Neuroscience, 9(APR), 1–8. https://doi.org/10.3389/fncel.2015.00142 Vai! Cerca con Google

Dogbevia, G. K., Roßmanith, M., Sprengel, R., & Hasan, M. T. (2016). Flexible, AAV-equipped Genetic Modules for Inducible Control of Gene Expression in Mammalian Brain. Molecular Therapy - Nucleic Acids, 5(November 2015), e309. https://doi.org/10.1038/mtna.2016.23 Vai! Cerca con Google

Dunlap, J. C., & Loros, J. J. (2004). The Neurospora circadian system. Journal of Biological Rhythms, 19(5), 414–424. https://doi.org/10.1177/0748730404269116 Vai! Cerca con Google

Flavell, S. W., & Greenberg, M. E. (2008). Expression and Plasticity of the Nervous System. Annu Rev Neurosci, 563–590. https://doi.org/10.1146/annurev.neuro.31.060407.125631.Signaling Vai! Cerca con Google

Gachon, F., Nagoshi, E., Brown, S. A., Ripperger, J., & Schibler, U. (2004). The mammalian circadian timing sytem: From gene expression to physiology. Chromosoma, 113(3), 103–112. https://doi.org/10.1007/s00412-004-0296-2 Vai! Cerca con Google

Gizowski, C., Zaelzer, C., & Bourque, C. W. (2016). Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature, 537(7622), 685–688. https://doi.org/10.1038/nature19756 Vai! Cerca con Google

Gomez, J. L., Bonaventura, J., Lesniak, W., Mathews, W. B., Sysa-Shah, P., Rodriguez, L. A., … Michaelides, M. (2017). Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science, 357(6350), 503–507. https://doi.org/10.1126/science.aan2475 Vai! Cerca con Google

Gossen, M., & Bujard, H. (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proceedings of the National Academy of Sciences of the United States of America, 89(12), 5547–5551. https://doi.org/10.1073/pnas.89.12.5547 Vai! Cerca con Google

Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C., & Luo, L. (2013). Permanent genetic access to transiently active neurons via TRAP: Targeted recombination in active populations. Neuron, 78(5), 773–784. https://doi.org/10.1016/j.neuron.2013.03.025 Vai! Cerca con Google

Herzog, E. D., Hermanstyne, T., Smyllie, N. J., & Hastings, M. H. (2017). Regulating the suprachiasmatic nucleus (SCN) circadian clockwork: Interplay between cell- autonomous and circuit-level mechanisms. Cold Spring Harbor Perspectives in Biology, 9(1), 1–26. https://doi.org/10.1101/cshperspect.a027706 Vai! Cerca con Google

Kistnert, A., Gossentt, M., Zimmermannt, F., Jerecict, J., Ullmer, C., Lubbert, H., & Bujardt1, H. (1996). Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice (tet system/genetic switch/kinetics of induction/liver-specific control). Proceedings of the National Academy of Sciences USA, 93(October), 10933–10938. https://doi.org/10.1073/pnas.93.20.10933 Vai! Cerca con Google

Knapska, E., & Maren, S. (2009). reciprocal patterns of c-Fos expression in the medial prefrontal cortex amygdala. (734), 486–493. https://doi.org/10.1101/lm.1463909.16 Vai! Cerca con Google

Koike, N., Yoo, S. H., Huang, H. C., Kumar, V., Lee, C., Kim, T. K., & Takahashi, J. S. (2012). Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science, 338(6105), 349–354. https://doi.org/10.1126/science.1226339 Vai! Cerca con Google

Kriegsfeld, L. J., & Silver, R. (2006). The regulation of neuroendocrine function: Timing is everything. Hormones and Behavior, 49(5), 557–574. https://doi.org/10.1016/j.yhbeh.2005.12.011 Vai! Cerca con Google

Lemaire, R., Ph, D., Farina, G., Ph, D., Bayle, J., Ph, D., … Lafyatis, R. (2011). NIH Public Access. 130(6), 1514–1523. https://doi.org/10.1038/jid.2010.15.Antagonistic Vai! Cerca con Google

Liu, A. C., Welsh, D. K., Ko, C. H., Tran, H. G., Zhang, E. E., Priest, A. A., … Kay, S. A. (2007). Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network. Cell, 129(3), 605–616. https://doi.org/10.1016/j.cell.2007.02.047 Vai! Cerca con Google

Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., & Tonegawa, S. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484(7394), 381–385. https://doi.org/10.1038/nature11028 Vai! Cerca con Google

Loew, R., Heinz, N., Hampf, M., Bujard, H., & Gossen, M. (2010). Improved Tetresponsive promoters with minimized background expression. BMC Biotechnology, 10(1), 81. https://doi.org/10.1186/1472-6750-10-81 Vai! Cerca con Google

Lucas, R. J., Freedman, M. S., Muñoz, M., Garcia-Fernández, J. M., & Foster, R. G. (1999). Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science, 284(5413), 505–507. https://doi.org/10.1126/science.284.5413.505 Vai! Cerca con Google

Mazuski, C., Abel, J. H., Chen, S. P., Hermanstyne, T. O., Jones, J. R., Simon, T., … Herzog, E. D. (2018). Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons. Neuron, 99(3), 555-563.e5. https://doi.org/10.1016/j.neuron.2018.06.029 Vai! Cerca con Google

Milanovic, S., Radulovic, J., Laban, O., Stiedl, O., Henn, F., & Spiess, J. (1998). Production of the Fos protein after contextual fear conditioning of C57BL/6N mice. Brain Research, 784(1–2), 37–47. https://doi.org/10.1016/S0006-8993(97)01266-3 Vai! Cerca con Google

Mukhametov, L. M., Supin, A. Y., & Polyakova, I. G. (1977). Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Research, 134(3), 581–584. https://doi.org/10.1016/0006-8993(77)90835-6 Vai! Cerca con Google

Panda, S. (2016). Circadian physiology of metabolism. Science, 354(6315), 1008–1015. https://doi.org/10.1126/science.aah4967 Vai! Cerca con Google

Reijmers, L. G., Perkins, B. L., Matsuo, N., & Mayford, M. (2007). Localization of a stable neural correlate of associative memory. Science, 317(5842), 1230–1233. https://doi.org/10.1126/science.1143839 Vai! Cerca con Google

Rodriguez, A. V., Funk, C. M., Vyazovskiy, V. V., Nir, Y., Tononi, G., & Cirelli, C. (2016). Why does sleep slow-wave activity increase after extended wake? Assessing the effects of increased cortical firing during wake and sleep. Journal of Neuroscience, 36(49), 12436–12447. https://doi.org/10.1523/JNEUROSCI.1614-16.2016 Vai! Cerca con Google

Sagar, S. M., Sharp, F. R., & Curran, T. (1988). Expression of c-fos protein in brain: Metabolic mapping at the cellular level. Science Science, 240(4857), 1328–1331. https://doi.org/10.1126/science.3131879 Vai! Cerca con Google

Sakurai, K., Zhao, S., Takatoh, J., Rodriguez, E., Lu, J., Leavitt, A. D., … Wang, F. (2016). Capturing and Manipulating Activated Neuronal Ensembles with CANE Delineates a Hypothalamic Social-Fear Circuit. Neuron, 92(4), 739–753. https://doi.org/10.1016/j.neuron.2016.10.015 Vai! Cerca con Google

Sørensen, A. T., Cooper, Y. A., Baratta, M. V., Weng, F. J., Zhang, Y.,Ramamoorthi, K., … Lin, Y. (2016). A robust activity marking system for exploring active neuronal ensembles. ELife, 5(September), 1–28. https://doi.org/10.7554/eLife.13918 Vai! Cerca con Google

Steriade, M. (2000). Corticothalamic resonance, states of vigilance and mentation. Neuroscience, 101(2), 243–276. https://doi.org/10.1016/S0306-4522(00)00353-5 Vai! Cerca con Google

Tayler, K. K., Tanaka, K. Z., Reijmers, L. G., & Wiltgen, B. J. (2013). Reactivation of neural ensembles during the retrieval of recent and remote memory. Current Biology, 23(2), 99–106. https://doi.org/10.1016/j.cub.2012.11.019 Vai! Cerca con Google

Tononi, G., & Cirelli, C. (2003). Sleep and synaptic homeostasis: A hypothesis. Brain Research Bulletin, 62(2), 143–150. https://doi.org/10.1016/j.brainresbull.2003.09.004 Vai! Cerca con Google

Vyazovskiy, V. V., & Faraguna, U. (2015). Sleep and synaptic homeostasis. Current Topics in Behavioral Neurosciences, 25, 91–121. https://doi.org/10.1007/7854_2014_301 Vai! Cerca con Google

Vyazovskiy, V. V, Olcese, U., Lazimy, Y. M., Faraguna, U., Steve, K., Williams, J. C., … Tononi, G. (2010). NIH Public Access. 63(6), 865–878. https://doi.org/10.1016/j.neuron.2009.08.024.Cortical Vai! Cerca con Google

Walters, B. J., & Zuo, J. (2015). A Sox10rtTA/+ Mouse Line Allows for Inducible Gene Expression in the Auditory and Balance Organs of the Inner Ear. JARO - Journal of the Association for Research in Otolaryngology, 16(3), 331–345. https://doi.org/10.1007/s10162-015-0517-9 Vai! Cerca con Google

Wang, B., Ke, W., Guang, J., Chen, G., Yin, L., Deng, S., … Shu, Y. (2016). Firing frequency maxima of fast-spiking neurons in human, monkey, and mouse neocortex. Frontiers in Cellular Neuroscience, 10(OCT2016), 1–13. https://doi.org/10.3389/fncel.2016.00239 Vai! Cerca con Google

Watson, B. O., Levenstein, D., Greene, J. P., Gelinas, J. N., & Buzsáki, G. (2016). Network Homeostasis and State Dynamics of Neocortical Sleep. Neuron, 90(4), 839–852. https://doi.org/10.1016/j.neuron.2016.03.036 Vai! Cerca con Google

Welsh, D. K., Logothetis, D. E., Meister, M., & Reppert, S. M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron, 14(4), 697–706.https://doi.org/10.1016/0896-6273(95)90214-7 Vai! Cerca con Google

Wilson, Y., Nag, N., Davern, P., Oldfield, B. J., McKinley, M. J., Greferath, U., & Murphy, M. (2002). Visualization of functionally activated circuitry in the brain. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3252–3257. https://doi.org/10.1073/pnas.042701199 Vai! Cerca con Google

Zhang, Z., Ferretti, V., Güntan, I., Moro, A., Steinberg, E. A., Ye, Z., … Franks, N. P. (2015). Neuronal ensembles sufficient for recovery sleep and the sedative actions of α 2 adrenergic agonists. Nature Neuroscience, 18(4), 553–561. https://doi.org/10.1038/nn.3957 Vai! Cerca con Google

Zhou, X., Vink, M., Klaver, B., Berkhout, B., & Das, A. T. (2006). Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Therapy, 13(19), 1382–1390. https://doi.org/10.1038/sj.gt.3302780 Vai! Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record